Advertisement

Routing Model Evaluator

  • Vince Antal
  • Tamás Gábor Farkas
  • Alex Kiss
  • Miklós Miskolczi
  • László Z. VargaEmail author
Conference paper
  • 50 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12092)

Abstract

We expect that the traffic will be almost optimal when the collective behaviour of autonomous vehicles will determine the traffic. The route selection plays an important role in optimizing the traffic. There are different models of the routing problem. The novel intention-aware online routing game model points out that intention-awareness helps to avoid that the traffic generated by autonomous vehicles be worse than the traffic indicated by classical traffic flow models. The models are important, but their applicability in real life needs further investigations. We are building a test environment, where the decision making methods of the different models can be evaluated in almost real traffic. The almost real traffic runs in a well known simulation platform. The simulation platform also provides tools to calculate a dynamic equilibrium traffic assignment. The calculation needs long time and a lot of computing resources. The routing model evaluator contains an implementation of the routing model which determines the routes for the vehicles. The route selections are injected into the simulation platform, and the simulation platform drives the vehicles. The first results of the investigations with the routing model evaluator show that the route selection of the intention-aware routing model will be able to bring the traffic close to a dynamic equilibrium in real time.

Keywords

Autonomous vehicles Route selection Dynamic equilibrium 

Notes

Acknowledgement

The work of V. Antal, T.G. Farkas, A. Kiss, and M. Miskolczi was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). The work of L.Z. Varga was supported by project no. ED_18-1-2019-0030 (Application domain specific highly reliable IT solutions subprogramme), and implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme.

References

  1. 1.
    Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)Google Scholar
  2. 2.
    Blum, A., Even-Dar, E., Ligett, K.: Routing without regret: on convergence to Nash equilibria of regret-minimizing algorithms in routing games. In: Proceedings of the 25th ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 45–52. ACM, New York (2006).  https://doi.org/10.1145/1146381.1146392
  3. 3.
    Claes, R., Holvoet, T.: Traffic coordination using aggregation-based traffic predictions. IEEE Intell. Syst. 29(4), 96–100 (2014).  https://doi.org/10.1109/MIS.2014.73CrossRefGoogle Scholar
  4. 4.
    Claes, R., Holvoet, T., Weyns, D.: A decentralized approach for anticipatory vehicle routing using delegate multi-agent systems. IEEE Trans. Intell. Transp. Syst. 12(2), 364–373 (2011).  https://doi.org/10.1109/TITS.2011.2105867CrossRefGoogle Scholar
  5. 5.
    Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria in fluid queuing networks. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 161–172. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59250-3_14CrossRefGoogle Scholar
  6. 6.
    Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)Google Scholar
  7. 7.
    Fischer, S., Vöcking, B.: On the evolution of selfish routing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 323–334. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30140-0_30CrossRefGoogle Scholar
  8. 8.
    Gawron, C.: An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int. J. Mod. Phys. C 09(03), 393–407 (1998).  https://doi.org/10.1142/s0129183198000303CrossRefGoogle Scholar
  9. 9.
    Halpern, J.Y., Moses, Y.: A procedural characterization of solution concepts in games. J. Artif. Intell. Res. 49, 143–170 (2014).  https://doi.org/10.1613/jair.4220MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, 3rd edn. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  11. 11.
    Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory Comput. Syst. 49(1), 71–97 (2011).  https://doi.org/10.1007/s00224-010-9299-yMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, November 2018.  https://doi.org/10.1109/itsc.2018.8569938
  13. 13.
    Merchant, D.K., Nemhauser, G.L.: A model and an algorithm for the dynamic traffic assignment problems. Transp. Sci. 12(3), 183–199 (1978).  https://doi.org/10.1287/trsc.12.3.183CrossRefGoogle Scholar
  14. 14.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007).  https://doi.org/10.1017/CBO9780511800481CrossRefzbMATHGoogle Scholar
  15. 15.
    Palaiopanos, G., Panageas, I., Piliouras, G.: Multiplicative weights update with constant step-size in congestion games: convergence, limit cycles and chaos. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5874–5884. Curran Associates, USA (2017).  https://doi.org/10.5555/3295222.3295337
  16. 16.
    Parkes, D.C.: Online mechanisms. In: Algorithmic Game Theory, pp. 411–439. Cambridge University Press (2007).  https://doi.org/10.1017/CBO9780511800481
  17. 17.
    Peeta, S., Ziliaskopoulos, A.K.: Foundations of dynamic traffic assignment: the past, the present and the future. Netw. Spat. Econ. 1(3), 233–265 (2001).  https://doi.org/10.1023/A:1012827724856CrossRefGoogle Scholar
  18. 18.
    Pourabdollah, M., Bjarkvik, E., Furer, F., Lindenberg, B., Burgdorf, K.: Calibration and evaluation of car following models using real-world driving data. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, October 2017.  https://doi.org/10.1109/itsc.2017.8317836
  19. 19.
    Roughgarden, T.: Routing games. In: Algorithmic Game Theory, pp. 461–486. Cambridge University Press (2007).  https://doi.org/10.1017/CBO9780511800481
  20. 20.
    Sandholm, W.H.: Potential games with continuous player sets. J. Econ. Theory 97(1), 81–108 (2001).  https://doi.org/10.1006/jeth.2000.2696MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Schaefer, M., Čáp, M., Vokřínek, J.: AgentDrive: agent-based simulator for intelligent cars and its application for development of a lane-changing assistant. In: Alonso-Betanzos, A., et al. (eds.) Agent-Based Modeling of Sustainable Behaviors. UCS, pp. 143–165. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-46331-5_7CrossRefGoogle Scholar
  22. 22.
    Schaefer, M., Vokřínek, J., Pinotti, D., Tango, F.: Multi-agent traffic simulation for development and validation of autonomic car-to-car systems. In: McCluskey, T.L., Kotsialos, A., Müller, J.P., Klügl, F., Rana, O., Schumann, R. (eds.) Autonomic Road Transport Support Systems. AS, pp. 165–180. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-25808-9_10CrossRefGoogle Scholar
  23. 23.
    Torabi, B., Al-Zinati, M., Wenkstern, R.Z.: MATISSE 3.0: a large-scale multi-agent simulation system for intelligent transportation systems. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 357–360. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94580-4_38CrossRefGoogle Scholar
  24. 24.
    Varga, L.: On intention-propagation-based prediction in autonomously self-adapting navigation. Scalable Comput.: Pract. Exp. 16(3), 221–232 (2015). http://www.scpe.org/index.php/scpe/article/view/1098
  25. 25.
    Varga, L.Z.: Two prediction methods for intention-aware online routing games. In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT-2017. LNCS (LNAI), vol. 10767, pp. 431–445. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01713-2_30CrossRefGoogle Scholar
  26. 26.
    Varga, L.Z.: Dynamic global behaviour of online routing games. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI), vol. 11375, pp. 202–221. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-25693-7_11CrossRefGoogle Scholar
  27. 27.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1(36), 352–378 (1952)Google Scholar
  28. 28.
    de Weerdt, M.M., Stein, S., Gerding, E.H., Robu, V., Jennings, N.R.: Intention-aware routing of electric vehicles. IEEE Trans. Intell. Transp. Syst. 17(5), 1472–1482 (2016).  https://doi.org/10.1109/TITS.2015.2506900CrossRefGoogle Scholar
  29. 29.
    Weibull, J.W.: Evolutionary Game Theory. MIT Press Ltd., Cambridge (1997)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of InformaticsELTE Eötvös Loránd UniversityBudapestHungary

Personalised recommendations