Advertisement

A MAS-Based Approach for POI Group Recommendation in LBSN

  • Silvia SchiaffinoEmail author
  • Daniela Godoy
  • J. Andrés Díaz Pace
  • Yves Demazeau
Conference paper
  • 58 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12092)

Abstract

Location-based recommender systems (LBRS) suggest friends, events, and places considering information about geographical locations. These recommendations can be made to individuals but also to groups of users, which implies satisfying the group as a whole. In this work, we analyze different alternatives for POI group recommendations based on a multi-agent system consisting of negotiating agents that represent a group of users. The results obtained thus far indicate that our multi-agent approach outperforms traditional aggregation approaches, and that the usage of LBSN information helps to improve both the quality of the recommendations and the efficiency of the recommendation process.

Keywords

Group recommender systems Location-based social networks Multi-agent systems Negotiation 

Notes

Acknowledgements

We thank CONICET PIP Project 112-201501-00030, ANPCyT project PICT 2016-2973, C. Ríos and C. Villavicencio for their support and their work.

References

  1. 1.
    Ayala-Gómez, F., Daróczy, B., Mathioudakis, M., Benczúr, A., Gionis, A.: Where could we go? Recommendations for groups in location-based social networks. In: Proceedings of the ACM on Web Science Conference (WebSci 2017), pp. 93–102 (2017)Google Scholar
  2. 2.
    Boratto, L., Carta, S., Fenu, G., Mulas, F., Pilloni, P.: Influence of rating prediction on group recommendation’s accuracy. IEEE Intell. Syst. 31(6), 22–27 (2016)CrossRefGoogle Scholar
  3. 3.
    Endriss, U.: Monotonic concession protocols for multilateral negotiation. In: Proceedings of the 5th International Joint Conference (AAMAS 2006), pp. 392–399 (2006)Google Scholar
  4. 4.
    Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M.: Group Recommender Systems. SECE. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75067-5CrossRefGoogle Scholar
  5. 5.
    Gottapu, R.D., Sriram Monangi, L.V.: Point-of-interest recommender system for social groups. Procedia Comput. Sci. 114(C), 159–164 (2017)CrossRefGoogle Scholar
  6. 6.
    Karypis, G.: Evaluation of item-based top-n recommendation algorithms. In: Proceedings of the 10th International Conference on Information and Knowledge Management (CIKM 2001), pp. 247–254 (2001)Google Scholar
  7. 7.
    Nguyen, T.N., Ricci, F.: Dynamic elicitation of user preferences in a chat-based group recommender system. In: Proceedings of the SAC 2017, pp. 1685–1692 (2017)Google Scholar
  8. 8.
    Purushotham, S., Kuo, C.-C.J., Shahabdeen, J., Nachman, L.: Collaborative group-activity recommendation in location-based social networks. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop (GeoCrowd 2014), pp. 8–15 (2014)Google Scholar
  9. 9.
    Ravi, L., Vairavasundaram, S.: A collaborative location based travel recommendation system through enhanced rating prediction for the group of users. Comput. Intell. Neurosci. 2016, 7 (2016) Google Scholar
  10. 10.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, Boston (2011).  https://doi.org/10.1007/978-0-387-85820-3CrossRefzbMATHGoogle Scholar
  11. 11.
    Rios, C., Schiaffino, S., Godoy, D.: A study of neighbour selection strategies for POI recommendation in LBSNs. J. Inf. Sci. 44(6), 802–817 (2018)CrossRefGoogle Scholar
  12. 12.
    Rosenschein, J.S., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation Among Computers. MIT Press, Cambridge (1994)Google Scholar
  13. 13.
    Rossi, S., Di Napoli, C., Barile, F., Liguori, L.: A multi-agent system for group decision support based on conflict resolution styles. In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS (LNAI), vol. 10238, pp. 134–148. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57285-7_9CrossRefGoogle Scholar
  14. 14.
    Felfernig, A., Boratto, L., Stettinger, M., Tkalčič, M.: Evaluating group recommender systems. Group Recommender Systems. SECE, pp. 59–71. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-75067-5_3 CrossRefGoogle Scholar
  15. 15.
    Villavicencio, C., Schiaffino, S., Diaz-Pace, J.A., Monteserin, A., Demazeau, Y., Adam, C.: A MAS approach for group recommendation based on negotiation techniques. In: Demazeau, Y., Ito, T., Bajo, J., Escalona, M.J. (eds.) PAAMS 2016. LNCS (LNAI), vol. 9662, pp. 219–231. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39324-7_19CrossRefGoogle Scholar
  16. 16.
    Yuan, Z., Chen, C.: Research on group POls recommendation fusion of users’ gregariousness and activity in LBSN. In: Proceedings of the 2nd IEEE International Conference on Cloud Computing and Big Data Analysis, pp. 305–310 (2017)Google Scholar
  17. 17.
    Zeuthen, F.L.B.: Problems of Monopoly and Economic Warfare. Routledge, Abingdon (1930)Google Scholar
  18. 18.
    Zhu, Q., Wang, S., Cheng, B., Sun, Q., Yang, F., Chang, R.N.: Context-aware group recommendation for point-of-interests. IEEE Access 6, 12129–12144 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Silvia Schiaffino
    • 1
    Email author
  • Daniela Godoy
    • 1
  • J. Andrés Díaz Pace
    • 1
  • Yves Demazeau
    • 2
  1. 1.ISISTAN (UNCPBA-CONICET)TandilArgentina
  2. 2.Laboratoire d’Informatique de Grenoble (CNRS)GrenobleFrance

Personalised recommendations