An Interruptible Task Allocation Model

Application to a Honey Bee Colony Simulation
  • Thomas AlvesEmail author
  • Jérémy Rivière
  • Cédric Alaux
  • Yves Le Conte
  • Frank Singhoff
  • Thierry Duval
  • Vincent Rodin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12092)


Division of labour is a key aspect of distributed systems, such as swarm robotics or multi-agent systems. Inspired by social insects known for their task allocation capabilities, most of the models rely on two assumptions: 1) each task is associated with a stimulus, and 2) the execution of this task lowers that stimulus. In short, the stimulus is a representation of the amount of work needed on a task. When these assumptions are not true, we need a mechanism to guide the agent in its decision whether to pursue or to interrupt its current task, as there is no diminishing stimulus to rely on. In this article, we propose a model based on the Response Threshold Model and a mechanism based on the agent’s intrinsic motivation and internal states, allowing to take into account tasks dissociated from stimuli. Agents use their intrinsic motivation to emulate the priority of tasks not associated with any stimuli, and to decide whether to interrupt or pursue their current task. This model has been applied to simulate the division of labour within a simplified honey bee colony, associated with the constantly adapting physiology of honey bees. Preliminary results show that the task allocation is effective, robust and in some cases improved by the interruption mechanism.


Agent-based simulation Task allocation Self-organisation 


  1. 1.
    Anderson, C., Franks, N.R.: Teamwork in animals, robots, and humans. Adv. Study Behav. 33, 2–3 (2003)Google Scholar
  2. 2.
    Baldassarre, G., Mirolli, M.: Intrinsically Motivated Learning in Natural and Artificial Systems. Springer, Heidelberg (2013). Scholar
  3. 3.
    Beshers, S.N., Fewell, J.H.: Models of division of labor in social insects. Ann. Rev. Entomol. 46, 413–440 (2001)CrossRefGoogle Scholar
  4. 4.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: From Natural to Artificial Swarm Intelligence. Oxford University Press Inc., Oxford (1999)zbMATHGoogle Scholar
  5. 5.
    Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2, 14–23 (1986)CrossRefGoogle Scholar
  6. 6.
    Campbell, A., Wu, A.S.: Multi-agent role allocation: issues, approaches, and multiple perspectives. Auton. Agents Multi-Agent Syst. 22, 317–355 (2011)CrossRefGoogle Scholar
  7. 7.
    Cornudella, M., Van Eecke, P., van Trijp, R.: How intrinsic motivation can speed up language emergence. In: European Conference on Artificial Life. The MIT Press (2015)Google Scholar
  8. 8.
    Csikszentmihalyi, M.: Finding Flow: The Psychology of Engagement with Everyday Life. Basic Books (1997)Google Scholar
  9. 9.
    Dornhaus, A., Klügl, F., Puppe, F., Tautz, J.: Task selection in honeybees - experiments using multi-agent simulation. In: Proceedings of GWAL (1998)Google Scholar
  10. 10.
    Drogoul, A., Ferber, J.: Multi-agent simulation as a tool for modeling societies: application to social differentiation in ant colonies. In: Castelfranchi, C., Werner, E. (eds.) MAAMAW 1992. LNCS, vol. 830, pp. 2–23. Springer, Heidelberg (1994). Scholar
  11. 11.
    Franks, N.R., Tofts, C.: Foraging for work: how tasks allocate workers. Anim. Behav. 48, 470–472 (1994)CrossRefGoogle Scholar
  12. 12.
    He, X.J., et al.: Starving honey bee (Apis mellifera) larvae signal pheromonally to worker bees. Sci. Rep. 6, 1–9 (2016)CrossRefGoogle Scholar
  13. 13.
    Heckel, F.W.P., Youngblood, G.M., Ketkar, N.S.: Representational complexity of reactive agents. In: Proceedings of the IEEE Conference on Computational Intelligence and Games. IEEE (2010)Google Scholar
  14. 14.
    Le Conte, Y., Mohammedi, A., Robinson, G.E.: Primer effects of a brood pheromone on honeybee behavioural development. In: Proceedings of the Royal Society of London. Series B: Biological Sciences (2001)Google Scholar
  15. 15.
    Maes, P.: The agent network architecture (ANA). ACM SIGART Bull. 2, 115–120 (1991)CrossRefGoogle Scholar
  16. 16.
    Morley, R.E., Schelberg, C.: An analysis of a plant-specific dynamic scheduler. In: Proceedings of the NSF Workshop on Dynamic Scheduling (1993)Google Scholar
  17. 17.
    Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: International Conference on Multiagent Systems (1995)Google Scholar
  18. 18.
    Roohi, S., Takatalo, J., Guckelsberger, C., Hämäläinen, P.: Review of intrinsic motivation in simulation-based game testing. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, CHI 2018. ACM Press (2018)Google Scholar
  19. 19.
    Ryan, R.M., Deci, E.L.: Intrinsic and extrinsic motivations: classic definitions and new directions. Contemp. Educ. Psychol. 25, 54–67 (2000)CrossRefGoogle Scholar
  20. 20.
    Schmickl, T., Crailsheim, K.: TaskSelSim: a model of the self-organization of the division of labour in honeybees. Math. Comput. Model. Dyn. Syst. 14, 101–125 (2008)CrossRefGoogle Scholar
  21. 21.
    Schmickl, T., Crailsheim, K.: Analysing honeybees’ division of labour in broodcare by a multi-agent model (2008)Google Scholar
  22. 22.
    Schmickl, T., Karsai, I.: Integral feedback control is at the core of task allocation and resilience of insect societies. Proc. Natl. Acad. Sci. 115, 13180–13185 (2018)CrossRefGoogle Scholar
  23. 23.
    Schmidhuber, J.: Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Trans. Auton. Ment. Dev. 2, 230–247 (2010)CrossRefGoogle Scholar
  24. 24.
    Seeley, T.D.: The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Harvard University Press, Cambridge (1995)Google Scholar
  25. 25.
    Seeley, T.D., Kolmes, S.A.: Age polyethism for hive duties in honey bees - illusion or reality? Ethology 87, 284–297 (1991)CrossRefGoogle Scholar
  26. 26.
    Theraulaz, G., Bonabeau, E., Deneubourg, J.L.: Response threshold reinforcements and division of labour in insect societies. Proc. Roy. Soc. B: Biol. Sci. 265, 327–332 (1998)CrossRefGoogle Scholar
  27. 27.
    Winston, M.L.: The Biology of the Honey Bee. Harvard University Press, Cambridge (1991)Google Scholar
  28. 28.
    Zahadat, P., Schmickl, T.: Division of labor in a swarm of autonomous underwater robots by improved partitioning social inhibition. Adapt. Behav. 24, 87–101 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Thomas Alves
    • 1
    Email author
  • Jérémy Rivière
    • 1
  • Cédric Alaux
    • 2
  • Yves Le Conte
    • 2
  • Frank Singhoff
    • 1
    • 4
  • Thierry Duval
    • 3
  • Vincent Rodin
    • 1
  1. 1.Univ Brest, Lab-STICC, CNRS, UMR 6285BrestFrance
  2. 2.INRAE, UR 406 Abeilles et EnvironnementAvignonFrance
  3. 3.IMT Atlantique, Lab-STICC, CNRS, UMR 6285BrestFrance
  4. 4.Groupement de Défense Sanitaire Apicole du Finistère (GDSA29)BrestFrance

Personalised recommendations