Saliency Guided Image Watermarking for Anti-forgery

  • Pham Quang Huy
  • Dao Nam AnhEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 899)


When hiding information in a host image, different types of image features can be used as secret key. The cryptanalytic watermarking approach is recognized as robustness improvement solution for authentication stems and anti-forgery from attack. This work contributes a novel learning technique using saliency features of sub regions to establish a secret key and then apply the key like a parameter for both watermark embedding and watermark extracting. However, there is modification of the image features through insertion of information in watermark embedding. We propose to use learning methods together with saliency models, for assuring robustness of watermark extracting. Here, the image watermarking method is described with SVM learning and assistance of a number of saliency models. Our results show that the cryptanalytic watermarking method is sufficient to achieve invisibility and stability of watermark. Experimental results on a benchmark indicate the advantage of the saliency feature based method for anti-forgery applications.


  1. 1.
    Cayre, F., Fontaine, C., Furon, T.: Watermarking security: theory and practice. IEEE Trans. Signal Process. 53(10), 3976–3987 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  3. 3.
    Seo, H.J., Milanfar, P.: Nonparametric bottom-up saliency detection by self-resemblance. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 45–52 (2009)Google Scholar
  4. 4.
    Hou, X., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 194–201 (2012)CrossRefGoogle Scholar
  5. 5.
    Riche, N., Mancas, M., Gosselin, B., Dutoit, T.: Rare: a new bottom-up saliency model. In: 2012 19th IEEE International Conference on Image Processing, pp. 641–644 (2012)Google Scholar
  6. 6.
    Fang, S., Li, J., Tian, Y., Huang, T., Chen, X.: Learning discriminative subspaces on ran-dom contrasts for image saliency analysis. IEEE Trans. Neural Netw. Learn. Syst. 28(5), 1095–1108 (2017)CrossRefGoogle Scholar
  7. 7.
    Oakes, M., Bhowmik, D., Abhayaratne, C.: Visual attention-based watermarking. In: 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, pp. 2653–2656 (2011)Google Scholar
  8. 8.
    Mielikainen, J.: LSB matching revisited. IEEE Signal Process. Lett. 13(5), 285 (2006)CrossRefGoogle Scholar
  9. 9.
    Xu, H., Wang, J.J., Kim, H.J.: Near-optimal solution to pair-wise LSB matching via an immune programming strategy. Inf. Sci. 180(8), 1201–1217 (2010)CrossRefGoogle Scholar
  10. 10.
    Basu, A., Talukdar, S., Sengupta, N., Kar, A., Chakraborty, S.L., Sarkar, S.K.: On the implementation of a saliency based digital watermarking. In: Mandal, J., Satapathy, S., Kumar Sanyal, M., Sarkar, P., Mukhopadhyay, A. (eds.) Information Systems Design and Intelligent Applications. Advances in Intelligent Systems and Computing, vol. 339. Springer (2015)Google Scholar
  11. 11.
    Tian, L.H., Zheng, N.N., Xue, J.R., Li, C., Wang, X.F.: An integrated visual saliency-based watermarking approach for synchronous image authentication and copyright protection. Sig. Process. Image Commun. 26(8–9), 427–437 (2011)CrossRefGoogle Scholar
  12. 12.
    Li, J., Zhang, H., Wang, J., Xiao, Y., Wan, W.: Orientation-aware saliency guided JND model for robust image watermarking. IEEE Access 7, 41261–41272 (2019)CrossRefGoogle Scholar
  13. 13.
    De Vleeschouwer, C., Delaigle, J.F., Macq, B.: Invisibility and application functionalities in perceptual watermarking—an overview. Proc. IEEE 90, 64–77 (2002)CrossRefGoogle Scholar
  14. 14.
    Pfitzmann, B.: Information hiding terminology. In: 1st Workshop on Information Hiding, pp. 347–350 (1996)Google Scholar
  15. 15.
    Ben-Hur, A., Horn, D., Siegelmann, H., Vapnik, V.N.: Support vector clustering. J. Mach. Learn. Res. 2, 125–137 (2001)zbMATHGoogle Scholar
  16. 16.
    Ahmed, N.: How I came up with the discrete cosine transform. Digit. Signal Proc. 1(1), 4–5 (1991)CrossRefGoogle Scholar
  17. 17.
    Jolliffe, I.T.: Principal Component Analysis. Series: Springer Series in Statistics, 2nd ed., XXIX, 487 p. 28. Springer(2002)Google Scholar
  18. 18.
    Wu, L., Zhang, J., Deng, W., He, D.: Arnold transformation algorithm and anti-arnold transformation algorithm. In: Proceedings 2009 First International Conference on Information Science and Engineering, pp. 1164–1167 (2009)Google Scholar
  19. 19.
    Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.: Deeply supervised salient object detection with short connections. In: IEEE TPAMI (2018)Google Scholar
  20. 20.
    Wackerly, D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with Applications, 7th edn. Thomson Higher Education, Belmont (2008)zbMATHGoogle Scholar
  21. 21.
    Richardson, I.E.G.: H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Wiley, Chichester (2003)Google Scholar
  22. 22.
    Brunet, D., Vass, J., Vrscay, E.R., Wang, Z.: On the mathematical properties of the structural similarity index (PDF). IEEE Trans. Image Process. 21(4), 2324–2328 (2012)zbMATHCrossRefGoogle Scholar
  23. 23.
    Winkler, W.E.: Overview of record linkage and current research directions. Research Report Series (2006)Google Scholar
  24. 24.
    Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., Carli, M.: Modified image visual quality metrics for contrast change and mean shift accounting. In: Proceedings 2011 11th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM), pp. 305–311 (2011)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Faculty of Information TechnologyElectric Power UniversityHanoiVietnam

Personalised recommendations