Characterization of Ancient Mixed Masonry Structures of Brickwork Infilled by Cobblestone Wall

  • I. LombilloEmail author
  • Y. Boffill
  • J. Pinilla
  • E. Moreno
  • H. Blanco
Part of the Building Pathology and Rehabilitation book series (BUILDING, volume 13)


A great part of the Architectural Heritage is constructed with masonry walls. Certain interventions in this Heritage make it necessary to characterize the mechanical properties of these load-bearing elements. This article has the aim of proposing and using several complementary methods applicable to the characterization of the materials forming historical masonry structures, applying them to mixed masonry made up of bricks, lime mortars and cobblestones. In this research, tests were carried out on a building constructed in two clearly differentiated periods, 15–18th century and 19–20th century. A sample-taking campaign was done on bricks, mortars and portions of masonry, for later physical-chemical-morphological-mechanical testing in laboratory, and an in situ experimental minimally-intrusive campaign using techniques such as flat-jack, sclerometer and penetration-meter on mortars. The mechanical results obtained enabled the evaluation of the validity of some experimental formulas for estimating the strength of masonries from the strength of their component materials (brick and mortar), when applying them to historical constructions. In the same way, the physical-chemical characterization tests carried out enabled the justification, economically and minimally intrusively, the differentiation of the materials employed in the two construction periods.


Masonry structures Architectural heritage Laboratory experiments In situ campaign 



This work was partially supported through the project “Study of the ‘Casa de los Aragoneses (Monachil, Granada)’ to assess the state of the structure and materials in order to carry out their refurbishment” funded by the ‘Organismo Autónomo de Parques Naturales’.


  1. ACI committee 530 (1999) Building code requirements for masonry structure. American Concrete Institute, Farmington Hills, MIGoogle Scholar
  2. Arizzi A, Martínez J, Cultrone G (2013) Ultrasonic wave propagation through lime mortars: an alternative and non-destructive tool for textural characterization. Mater Struct 46(8):1321–1335CrossRefGoogle Scholar
  3. Binda L, Lualdi M, Saisi A (2008) Investigation strategies for the diagnosis of historic structures: on-site tests on Avio Castle, Iatly, and Pisece Castle. Slovenia. Can J Civ Eng 35:555–566CrossRefGoogle Scholar
  4. Binda L, Saisi A, Tiraboschi C (2000) Investigation procedures for the diagnosis of historic masonries. Constr Build Mater 14:199–233CrossRefGoogle Scholar
  5. Binda L, Baronio G, Gambarotta L, LagomarsinoS, Modena C (1999) Masonry constructions in seismic areas of central Italy: a multi-level approach to conservation. In: 8th North American masonry conference. Austin, pp 44–55Google Scholar
  6. Binda L, Anzani A, Cardani G (2009) Methodologies for the evaluation of seismic vulnerability of complex masonry buildings: case histories in the historic centre of Sulmona. In: Brebbia CA (ed) Proceedings of 11th international conference on structural repairs and maintenance of heritage architecture (STREMAH 2009). Wessex Institute of Technology Press, Ashurst, United Kingdom, pp 395–405Google Scholar
  7. British Standard BD 21/93 (1993) The assessment of highway bridges and structures. Department of transport, Her Majesty’s Stationery Ofc., LondonGoogle Scholar
  8. Code UIC 778–3 (1995) Recomendations pour l’evaluation de la capacité portante des ponts-voûtes existants en maçonnerie et beton. Union Internationales des Chemins de ferGoogle Scholar
  9. EN 1996–1–1 (2005) Eurocode nº 6: Design of masonry structures, Part 1–1: General rules for reinforced and un-reinforced masonry structuresGoogle Scholar
  10. Franzoni E, Leemann A, Griffa M, Lura P (2017) The “Terranova” render of the Engineering Faculty in Bologna (1931–1935): reasons for an outstanding durability. Mater Struct 50:221CrossRefGoogle Scholar
  11. Gucci N, Barsotti R (1995) A non-destructive technique for the determination of mortar load capacity in situ. Mater Struct 28(5):276–283CrossRefGoogle Scholar
  12. Gucci N, Sassu M (2002) Resistenza delle murature: valutazione con metodi non distruttivi, il Penetrometro PNT-G. L’Edilizia 16(2):36–40Google Scholar
  13. Van Hees RPJ, Binda L, Papayianni I, Toumbakari E (2004) Characterisation and damage analysis of old mortars. RILEM TC 167-COM: ‘Characterisation of Old Mortars with Respect to their Repair’. Mater Struct 37:644–648CrossRefGoogle Scholar
  14. Hendry AW, Malek MH (1986) Characteristic compressive strength of brickwork from collected test results. Masonry Int 7:15–24Google Scholar
  15. Hendry AW (1998) Structural Masonry. Macmillan Press LtdGoogle Scholar
  16. Isebaert A, De Boever W, Cnudde V, Van Parys L (2016) An empirical method for the estimation of permeability in natural hydraulic lime mortars. Mater Struct 49:4853–4865CrossRefGoogle Scholar
  17. Lombillo I, Thomas C, Villegas L, Fernández-Álvarez JP, Norambuena-Contreras J (2013) Mechanical characterization of rubble stone masonry walls using non and minor destructive tests. Constr Build Mater 43:266–277CrossRefGoogle Scholar
  18. Lombillo I, Villegas L, Fodde E, Thomas C (2014) In situ mechanical investigation of rammed earth: calibration of minor destructive testing. Constr Build Mater 51:451–460CrossRefGoogle Scholar
  19. Lombillo I (2010) Theoretical–experimental research about minor destructive tests (MDT) applied to the mechanical on-site characterization of historic masonry structures. Dissertation, University of CantabriaGoogle Scholar
  20. López-Arce P, Tagnit-Hammou M, Menéndez B, Mertz J-D, Kaci A (2016) Durability of stone-repair mortars used in historic buildings from Paris. Mater Struct 49:5097–5115CrossRefGoogle Scholar
  21. Martínez JL, Martín-Caro JA, León J (2001) Comportamiento mecánico de la obra de fábrica. Universidad Politécnica de Madrid, Madrid, Departamento de Mecánica de los Medios Continuos y Teoría de EstructurasGoogle Scholar
  22. Middendorf B, Hughes JJ, Callebaut K, Baronio G, Papayianni I (2005). Investigative methods for the characterisation of historic mortars-Part 1: Mineralogical characterisation. RILEM TC 167-COM: Characterisation of Old Mortars with Respect to their Repair. Materials and Structures 38(38):761–769Google Scholar
  23. Nóbrega De Azeredo AF, Struble LJ, Carneiro AMP (2015) Microstructural characteristics of lime-pozzolan pastes made from kaolin production wastes. Mater Struct 48:2123–2132CrossRefGoogle Scholar
  24. Puche O, Mazadiego LF (2000) Las canteras históricas de Morata de Tajuña y la cementera Portland Valderribas. 1st Simposio Ibérico sobre Geología. Patrimonio y Sociedad, Tarazona, Spain, pp 109–123Google Scholar
  25. RILEM Recommendation MS-D.7 (1997) Determination of pointing hardness by pendulum hammer. RILEM TC 127-MS: Tests for masonry materials and structures. Materials and Structures 30:323–328Google Scholar
  26. RILEM Recommendation MDT. D.1 (2004) Indirect determination of the surface strength of unweathered hydraulic cement mortar by the drill energy method. RILEM TC 177-MDT: Masonry durability and on-site testing. Materials and Structures 37:485–487Google Scholar
  27. Rossi PP (1982) Analysis of mechanical characteristics of brick masonry by means of non-destructive in-situ tests. In: Proceedings of 6th international brick masonry conference. Rome, pp 77–85Google Scholar
  28. Rossi PP (1985) Flat-jack test for the analysis of mechanical behaviour of brick masonry structures. In: Proceedings of 7th internacional brick masonry conference, vol 1. Melbourne, pp 137–148Google Scholar
  29. Tassios T (1988) Mecánica delle muratura. Liguori Editore, NapplesGoogle Scholar
  30. Tavares M, Magalhães AC, Veiga MR, Velosa A, Aguiar A (2008) Repair mortars for a maritime fortress of the 17th century. In: Medachs–Construction Heritage in Coastal and Marine Environments: damage, diagnostics, maintenance and rehabilitation, Lisbon, LNECGoogle Scholar
  31. Tavares M, Veiga MR (2007) A Conservação de Rebocos Antigos - Restituir a Coesão Perdida através da Consolidação com Materiais Tradicionais e Sustentáveis. In: VII SBTA–Seminário Brasileiro de Tecnologia de Argamassas, Recife–Pe, ANTACGoogle Scholar
  32. Torices N, Gómez JJ, López L (2015) Informe histórico-artístico y arquitectónico del Molino de los Aragoneses de Monachil (Granada)Google Scholar
  33. UNE-EN 771–1 (2011) Especificaciones de piezas para fábrica de albañilería, Parte 1: Piezas de arcilla cocida. AENORGoogle Scholar
  34. UNE-EN 1015–11 (2007) Métodos de ensayo de los morteros para albañilería, Parte 11: Determinación de la resistencia a flexión y a compresión del mortero endurecido. AENORGoogle Scholar
  35. Verstrynge E, Schueremans L, Van Gemert D (2011) Time-dependent mechanical behavior of lime-mortar masonry. Mater Struct 44:29–42CrossRefGoogle Scholar
  36. p.i.e.t. 70 (1971) Prescripciones del Instituto Eduardo Torroja ‘Obras de Fábrica’. Instituto Eduardo Torroja de la Construcción y del Cemento (IETcc), MadridGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  • I. Lombillo
    • 1
    Email author
  • Y. Boffill
    • 1
  • J. Pinilla
    • 2
  • E. Moreno
    • 2
  • H. Blanco
    • 1
  1. 1.University of Cantabria, Civil Engineering SchoolSantanderSpain
  2. 2.Polytechnic University of Madrid, School of ArchitectureMadridSpain

Personalised recommendations