Advertisement

SLIP-Based Concept of Combined Limb and Body Control of Force-Driven Robots

  • Patrick VonwirthEmail author
  • Atabak Nejadfard
  • Krzysztof Mianowski
  • Karsten Berns
Conference paper
  • 62 Downloads
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 84)

Abstract

Many different approaches in hard- and software have been investigated to achieve bipedal locomotion. They can be partitioned into two separate classes: Mathematical approaches, offering provable stability, and bio-inspired ones, reproducing natural observations. The paper at hand presents a new concept to overcome this separation. By generalizing several SLIP variations (Spring Loaded Inverted Pendulum), a new type of hardware abstraction, the so-called Central Mass Model (CMM), is introduced. The CMM is designed to directly support the execution of bio-inspired control approaches, while its physical simplicity still allows for mathematical proofs. A controller, implementing the CMM abstraction on a force-driven robot, is derived and described in detail for the bipedal robot Carl.

Keywords

Bipedal robot Force control Inverted pendulum 

References

  1. 1.
    Antoniak, G., Biswas, T., Cortes, N., Sikdar, S., Chun, C., Bhandawat, V.: Spring-loaded inverted pendulum goes through two contraction-extension cycles during the single-support phase of walking. Biol. Open 8(6), bio043695 (2019).  https://doi.org/10.1242/bio.043695CrossRefGoogle Scholar
  2. 2.
    Blickhan, R.: The spring-mass model for running and hopping. J. Biomech. 22(11–12), 1217–1227 (1989)CrossRefGoogle Scholar
  3. 3.
    Drama, Ö., Badri-Spröwitz, A.: Trunk Pitch Oscillations for Joint Load Redistribution in Humans and Humanoid Robots. arXiv:1909.03687 [cs], September 2019
  4. 4.
    Englsberger, J., Ott, C., Albu-Schäffer, A.: Three-dimensional bipedal walking control using divergent component of motion. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2600–2607. IEEE (2013)Google Scholar
  5. 5.
    Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dynamics of walking and running. Proc. Roy. Soc. B: Biol. Sci. 273(1603), 2861–2867 (2006).  https://doi.org/10.1098/rspb.2006.3637CrossRefGoogle Scholar
  6. 6.
    Kawakami, T., Hosoda, K.: Bipedal walking with oblique mid-foot joint in foot. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 535–540. IEEE, December 2015Google Scholar
  7. 7.
    Lee, J., Vu, M.N., Oh, Y.: A control method for bipedal trunk spring loaded inverted pendulum model. In: The Thirteenth International Conference on Autonomic and Autonomous Systems, pp. 24–29 (2017)Google Scholar
  8. 8.
    Luksch, T., Berns, K.: Control of bipedal walking exploiting postural reflexes and passive dynamics. In: IEEE International Conference on Applied Bionics and Biomechanics (ICABB). Citeseer (2010)Google Scholar
  9. 9.
    Nejadfard, A., Schütz, S., Vonwirth, P., Mianowski, K., Karsten, B.: Moment arm analysis of the biarticular actuators in compliant robotic leg CARL. In: Conference on Biomimetic and Biohybrid Systems, pp. 348–360. Springer, Heidelberg, July 2018Google Scholar
  10. 10.
    Reher, J., Cousineau, E.A., Hereid, A., Hubicki, C.M., Ames, A.D.: Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. In: 2016 IEEE International Conference on Robotics and Automation, pp. 1794–1801, May 2016.  https://doi.org/10.1109/ICRA.2016.7487325
  11. 11.
    Schütz, S., Nejadfard, A., Mianowski, K., Vonwirth, P., Berns, K.: CARL – a compliant robotic leg featuring mono- and biarticular actuation. In: IEEE-RAS International Conference on Humanoid Robots (2017)Google Scholar
  12. 12.
    Sharbafi, M.A., Maufroy, C., Ahmadabadi, M.N., Yazdanpanah, M.J., Seyfarth, A.: Robust hopping based on virtual pendulum posture control. Bioinspir. Biomim. 8(3), 036002 (2013).  https://doi.org/10.1088/1748-3182/8/3/036002CrossRefGoogle Scholar
  13. 13.
    Sharbafi, M.A., Rashty, A.M.N., Rode, C., Seyfarth, A.: Reconstruction of human swing leg motion with passive biarticular muscle models. Hum. Mov. Sci. 52, 96–107 (2017)CrossRefGoogle Scholar
  14. 14.
    Song, S., Geyer, H.: A neural circuitry that emphasizes spinal feedback generates diverse behaviours of human locomotion. J. Physiol. 593(16), 3493–3511 (2015).  https://doi.org/10.1113/JP270228CrossRefGoogle Scholar
  15. 15.
    Stephens, B.: Humanoid push recovery. In: 2007 7th IEEE-RAS International Conference on Humanoid Robots, November 2007.  https://doi.org/10.1109/ICHR.2007.4813931
  16. 16.
    Torricelli, D., Gonzalez, J., Weckx, M., Jiménez-Fabián, R., Vanderborght, B., Sartori, M., Dosen, S., Farina, D., Lefeber, D., Pons, J.L.: Human-like compliant locomotion: state of the art of robotic implementations. Bioinspir. Biomim. 11(5), 051002 (2016).  https://doi.org/10.1088/1748-3190/11/5/051002CrossRefGoogle Scholar
  17. 17.
    Westervelt, E., Grizzle, J., Koditschek, D.: Hybrid zero dynamics of planar biped walkers. IEEE Trans. Autom. Control 48(1), 42–56 (2003).  https://doi.org/10.1109/TAC.2002.806653MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Williams, D., Khatib, O.: The virtual linkage: a model for internal forces in multi-grasp manipulation. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 1, pp. 1025–1030 (1993).  https://doi.org/10.1109/ROBOT.1993.292110
  19. 19.
    Zhao, J., Liu, Q., Schütz, S., Berns, K.: Experimental verification of an approach for disturbance estimation and compensation on a simulated biped during perturbed stance. In: IEEE International Conference on Robotics and Automation (ICRA 2014), Hongkong, China (2014)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Patrick Vonwirth
    • 1
    Email author
  • Atabak Nejadfard
    • 1
  • Krzysztof Mianowski
    • 2
  • Karsten Berns
    • 1
  1. 1.Department of Computer ScienceTechnische Universität KaiserslauternKaiserslauternGermany
  2. 2.Faculty of Power and Aeronautical EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations