Advertisement

Minimum-Energy Trajectory Planning for Industrial Robotic Applications: Analytical Model and Experimental Results

  • Lorenzo Scalera
  • Giovanni Carabin
  • Renato Vidoni
  • Alessandro GasparettoEmail author
Conference paper
  • 57 Downloads
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 84)

Abstract

In this paper an analytical model and experimental results for minimum-energy trajectories applied to robotic axes are presented. The dynamic and electro-mechanical models of a linear axis are implemented and applied for the planning of optimal point-to-point trajectories, using trapezoidal and cycloidal motion profiles. A challenging (but realistic, in industrial environments) scenario is chosen, namely a linear axis of a Cartesian manipulator built in the 1990’s. Experimental tests are carried out measuring the energy consumption directly from the drive unit. Despite the limitations of the mechanical and power measurement systems, the results show a trend in accordance with the numerical predictions, demonstrating the feasibility of the approach in enhancing the energetic performance of the robotic system, even in worst-case conditions.

Keywords

Robotics Trajectory planning Dynamic model Energy efficiency 

Notes

Acknowledgments

This work was partially supported by the Free University of Bozen-Bolzano funds within the project TN2803: Mech4SME3: Mechatronics for Smart Maintenance and Energy Efficiency Enhancement. The authors would like to thank L. Favaretto for his help in collecting the experimental data.

References

  1. 1.
    Barreto, J.P., Schöler, F., Corves, B.: The concept of natural motion for pick and place operations. In: New Advances in Mechanisms, Mechanical Transmissions and Robotics, pp. 89–98. Springer (2017)Google Scholar
  2. 2.
    Boscariol, P., Carabin, G., Gasparetto, A., Lever, N., Vidoni, R.: Energy-efficient point-to-point trajectory generation for industrial robotic machines. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain, pp. 1425–1433 (2015)Google Scholar
  3. 3.
    Boscariol, P., Gallina, P., Gasparetto, A., Giovagnoni, M., Scalera, L., Vidoni, R.: Evolution of a dynamic model for flexible multibody systems. In: Advances in Italian Mechanism Science, pp. 533–541. Springer (2017)Google Scholar
  4. 4.
    Boscariol, P., Gasparetto, A., Vidoni, R.: Planning continuous-jerk trajectories for industrial manipulators. In: ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis, pp. 127–136. American Society of Mechanical Engineers Digital Collection (2013)Google Scholar
  5. 5.
    Boscariol, P., Richiedei, D.: Energy-efficient design of multipoint trajectories for cartesian robots. Int. J. Adv. Manufact. Technol. 102(5–8), 1853–1870 (2019)CrossRefGoogle Scholar
  6. 6.
    Boscariol, P., Scalera, L., Gasparetto, A.: Task-dependent energetic analysis of a 3 DOF industrial manipulator. In: International Conference on Robotics in Alpe-Adria Danube Region, pp. 162–169. Springer (2019)Google Scholar
  7. 7.
    Carabin, G., Palomba, I., Wehrle, E., Vidoni, R.: Energy expenditure minimization for a delta-2 robot through a mixed approach. In: IFToMM World Congress on Mechanism and Machine Science, pp. 383–390. Springer (2019)Google Scholar
  8. 8.
    Carabin, G., Vidoni, R., Wehrle, E.: Energy saving in mechatronic systems through optimal point-to-point trajectory generation via standard primitives. In: The International Conference of IFToMM Italy, pp. 20–28. Springer (2018)Google Scholar
  9. 9.
    Carabin, G., Wehrle, E., Vidoni, R.: A review on energy-saving optimization methods for robotic and automatic systems. Robotics 6(4), 39 (2017)CrossRefGoogle Scholar
  10. 10.
    Hansen, C., Kotlarski, J., Ortmaier, T.: Experimental validation of advanced minimum energy robot trajectory optimization. In: 2013 16th International Conference on Advanced Robotics (ICAR), pp. 1–8. IEEE (2013)Google Scholar
  11. 11.
    Ho, P.M., Uchiyama, N., Sano, S., Honda, Y., Kato, A., Yonezawa, T.: Simple motion trajectory generation for energy saving of industrial machines. SICE J. Control Meas. Syst. Integr. 7(1), 29–34 (2014)CrossRefGoogle Scholar
  12. 12.
    Khalaf, P., Richter, H.: Trajectory optimization of robots with regenerative drive systems: numerical and experimental results. IEEE Transactions on Robotics, 12 July 2019 (2019).  https://doi.org/10.1109/TRO.2019.2923920
  13. 13.
    Kucukvar, M., Cansev, B., Egilmez, G., Onat, N.C., Samadi, H.: Energy-climate-manufacturing nexus: new insights from the regional and global supply chains of manufacturing industries. Appl. Energy 184, 889–904 (2016)CrossRefGoogle Scholar
  14. 14.
    Paes, K., Dewulf, W., Vander Elst, K., Kellens, K., Slaets, P.: Energy efficient trajectories for an industrial ABB robot. Procedia Cirp 15, 105–110 (2014)CrossRefGoogle Scholar
  15. 15.
    Richiedei, D., Trevisani, A.: Analytical computation of the energy-efficient optimal planning in rest-to-rest motion of constant inertia systems. Mechatronics 39, 147–159 (2016)CrossRefGoogle Scholar
  16. 16.
    Scalera, L., Carabin, G., Vidoni, R., Wongratanaphisan, T.: Energy efficiency in a 4-DOF parallel robot featuring compliant elements. Int. J. Mech. Control 20(2) (2019)Google Scholar
  17. 17.
    Scalera, L., Boscariol, P., Carabin, G., Vidoni, R., Gasparetto, A.: Enhancing energy efficiency of a 4-DOF parallel robot through task-related analysis. Machines 8(1), 10 (2020)CrossRefGoogle Scholar
  18. 18.
    Scalera, L., Palomba, I., Wehrle, E., Gasparetto, A., Vidoni, R.: Natural motion for energy saving in robotic and mechatronic systems. Appl. Sci. 9(17), 3516 (2019)CrossRefGoogle Scholar
  19. 19.
    Trigatti, G., Boscariol, P., Scalera, L., Pillan, D., Gasparetto, A.: A look-ahead trajectory planning algorithm for spray painting robots with non-spherical wrists. In: IFToMM Symposium on Mechanism Design for Robotics, pp. 235–242. Springer (2018)Google Scholar
  20. 20.
    Trigatti, G., Boscariol, P., Scalera, L., Pillan, D., Gasparetto, A.: A new path-constrained trajectory planning strategy for spray painting robots-rev. 1. Int. J. Adv. Manuf. Technol. 98(9–12), 2287–2296 (2018)CrossRefGoogle Scholar
  21. 21.
    Vidoni, R., Scalera, L., Gasparetto, A.: 3-D ERLS based dynamic formulation for flexible-link robots: theoretical and numerical comparison between the finite element method and the component mode synthesis approaches. Int. J. Mech. Control 19, 39–50 (2018)Google Scholar
  22. 22.
    Yin, H., Liu, J., Yang, F.: Hybrid structure design of lightweight robotic arms based on carbon fiber reinforced plastic and aluminum alloy. IEEE Access 7, 64932–64945 (2019)CrossRefGoogle Scholar
  23. 23.
    Zanotto, V., Gasparetto, A., Lanzutti, A., Boscariol, P., Vidoni, R.: Experimental validation of minimum time-jerk algorithms for industrial robots. J. Intell. Rob. Syst. 64(2), 197–219 (2011)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lorenzo Scalera
    • 1
  • Giovanni Carabin
    • 2
  • Renato Vidoni
    • 2
  • Alessandro Gasparetto
    • 1
    Email author
  1. 1.University of UdineUdineItaly
  2. 2.Free University of Bozen-BolzanoBolzanoItaly

Personalised recommendations