Advertisement

Maximizing the End-Effector Cartesian Stiffness Range for Kinematic Redundant Robot with Compliance

  • Branko LukićEmail author
  • Kosta Jovanović
  • Nikola Knežević
  • Leon Žlajpah
  • Tadej Petrič
Conference paper
  • 69 Downloads
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 84)

Abstract

Compliant robots with constant joint stiffness (Serial Elastic Actuators - SEA), on the contrary to ones with variable joint stiffness (Variable Stiffness Actuators – VSA), have limited capabilities for modulating robot mechanical impedance in the interaction task. However, in the case of kinematic redundancy in specific tasks, robots can exploit the null space to adjust End-Effector (EE) Cartesian stiffness. Thus, prior knowledge of the task path or the operational workspace can be used to pre-compute joint stiffness that can enable maximal ratio between maximal and minimal stiffness of the robot’s EE during the task execution, and therefore shape achievable EE stiffness to best fit the task execution. In that light, this paper elaborates on the preselection of joint stiffnesses which influences the achievable robot’s Cartesian stiffness in a specific task. Besides optimizing the available operational EE stiffness, by pre-computed joint stiffness values, the robot will be able to adapt better to specific tasks and provide a better framework for safe and efficient physical human-robot interaction. The paper presents an approach to the selection of predefined joint stiffness values of the 7-DOFs KUKA LWR, where joint stiffness is achieved/emulated with torque feedback. In the simulation experiments, the approach is depicted in the preselection of two joint stiffness values within the prescribed range, while other joint stiffness is set constant.

Keywords

Physical human-robot interaction Cartesian stiffness control Joint stiffness Kinematic redundancy 

References

  1. 1.
    Pedrocchi, N., Vicentini, F., Malosio, M., Tosatti, L.M.: Safe human-robot cooperation in an industrial environment. Int. J. Adv. Robot. Syst. 10(1), 27 (2013)CrossRefGoogle Scholar
  2. 2.
    Edsinger, A., Kemp, C.C.: Human-robot interaction for cooperative manipulation: handing objects to one another. In: Proceedings - IEEE International Workshop on Robot and Human Interactive Communication, pp. 1167–1172 (2007)Google Scholar
  3. 3.
    Ferro, F., Marchionni, L.: REEM: a humanoid service robot. In: ROBOT 2013: First Iberian Robotics Conference. Springer, Cham (2014)Google Scholar
  4. 4.
    Yu, H., Huang, S., Chen, G., Pan, Y., Guo, Z.: Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans. Robot. 31(5), 1089–1100 (2015)CrossRefGoogle Scholar
  5. 5.
    De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human–robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)CrossRefGoogle Scholar
  6. 6.
    Hogan, N.: Impedance control: an approach to manipulation: Part II—implementation. J. Dyn. Syst. Measur. Control 107(1), 8–16 (1985)CrossRefGoogle Scholar
  7. 7.
    Robinson, D.W., Pratt, J.E., Paluska, D.J., Pratt, G.A.: Series elastic actuator development for a biomimetic walking robot. In: Proceedings of 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 561–568 (1999)Google Scholar
  8. 8.
    Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings of 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. Human Robot Interaction and Cooperative Robots, vol. 1, pp. 399–406 (1995)Google Scholar
  9. 9.
    Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRefGoogle Scholar
  10. 10.
    Grioli, G., Wolf, S., Garabini, M., Catalano, M., Burdet, E., Caldwell, D., Carloni, R., Friedl, W., Grebenstein, M., Laffranchi, M., Lefeber, D., Stramigioli, S., Tsagarakis, N., VanDamme, M., Vanderborght, B., Albu-Schaeffer, A., Bicchi, A.: Variable stiffness actuators: the user’s point of view. Int. J. Robot. Res. 34(6), 727–743 (2015)CrossRefGoogle Scholar
  11. 11.
    Lakatos, D., Petit, F., Albu-Schäffer, A.: Nonlinear oscillations for cyclic movements in human and robotic arms. IEEE Trans. Robot. 30, 865–879 (2014)CrossRefGoogle Scholar
  12. 12.
    Lukić, B., Petrič, T., Žlajpah, L., Jovanović, K.: KUKA LWR robot Cartesian stiffness control based on kinematic redundancy. In: Berns, K., Görges, D. (eds.) Advances in Service and Industrial Robotics, RAAD 2019. Advances in Intelligent Systems and Computing, vol. 980. Springer, Cham (2020)Google Scholar
  13. 13.
    Knežević, N., Lukić, B., Jovanović, K., Petrič, T., Žlajpah, L.: End-effector Cartesian stiffness optimization: sequential quadratic programming approach. In: The 6th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN 2019), p. 736. ETRAN Society (2019)Google Scholar
  14. 14.
    Chiaverini, S., Oriolo, G., Maciejewski, A.A.: Redundant robots. In: Springer Handbook of Robotics, 2nd edn., pp. 221–242. Springer, Cham (2016)Google Scholar
  15. 15.
    Petit, F., Albu-Schäffer, A.: Cartesian impedance control for a variable stiffness robot arm. In: Proceedings of International Conference on Intelligent Robots and Systems 2011 (IROS 2011), pp. 4180–4186 (2011)Google Scholar
  16. 16.
    Albu-Schaffer, A., Fischer, M., Schreiber, G., Schoeppe, F., Hirzinger, G.: Soft robotics: what Cartesian stiffness can obtain with passively compliant, uncoupled joints? In: Proceedings of International Conference on Intelligent Robots and Systems, 2004 (IROS 2004), vol. 4, pp. 3295–3301 (2004)Google Scholar
  17. 17.
    Nemec, B., Žlajpah, L., Ude, A.: Door opening by joining reinforcement learning and intelligent control. In: 2017 18th International Conference on Advanced Robotics (ICAR), pp. 222–228. IEEE (2017)Google Scholar
  18. 18.
    Todorov, E.: Mujoco advanced physics simulation. http://www.mujoco.org/

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Branko Lukić
    • 1
    Email author
  • Kosta Jovanović
    • 1
  • Nikola Knežević
    • 1
  • Leon Žlajpah
    • 2
  • Tadej Petrič
    • 2
  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations