Remote Center of Motion for Redundant Robotic-Assisted Ultrasound Guided Regional Anesthesia

  • Mohammad AlkhatibEmail author
  • Cyril Novales
  • Laurence Nouaille
  • Adel Hafiane
  • Pierre Vieyres
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 84)


Ultrasound-guided regional anesthesia (UGRA) becomes a standard procedure in surgical operations and contributes to pain management; it offers the advantages of the needle and targeted nerve detection and provides the visualization of regions of interest such as anatomical structures. In UGRA, the remote center of motion (RCM) constitutes an essential issue as the anesthetist has to manipulate a needle inside the human body. However, RCM imposes a very challenging task, where it is important to ensure that the needle should move within the constraints of the insertion point in order to prevent patient harm. To respond to this need, this paper proposes a control framework for robot-assisted UGRA for physical human-robot collaboration using 7 degrees of freedom robot manipulator (Franka Emika). This paper shows a geometric method computing the intended robot’s end-effect position with respect to the RCM constraints. This method helps the anesthetist to execute a more sophisticated motion within the patient’s body with high accuracy.


Regional anesthesia Needle insertion kinematics Medical robotics Remote center of motion constraints 


  1. 1.
    Azimian, H., Patel, R.V., Naish, M.D.: On constrained manipulation in robotics-assisted minimally invasive surgery. In: 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 650–655. IEEE (2010)Google Scholar
  2. 2.
    Bloc, S., Rontes, O., Mercadal, L., Delbos, A.: Block success rate: a question of target and definition. Reg. Anesth. Pain Med. 38(6), 553 (2013)CrossRefGoogle Scholar
  3. 3.
    Dahroug, B., Tamadazte, B., Andreff, N.: 3D path following with remote center of motion constraints. In: ICINCO (1), pp. 84–91 (2016)Google Scholar
  4. 4.
    Dombre, E., Michelin, M., Pierrot, F., Poignet, P., Bidaud, P., Morel, G., Ortmaier, T., Sallé, D., Zemiti, N., Gravez, P., et al.: Marge project: design, modeling and control of assistive devices for minimally invasive surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 1–8. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Franka Emika: Panda (2018).
  6. 6.
    Funda, J., Taylor, R.H., Eldridge, B., Gomory, S., Gruben, K.G.: Constrained cartesian motion control for teleoperated surgical robots. IEEE Trans. Rob. Autom. 12(3), 453–465 (1996)Google Scholar
  7. 7.
    Gray, A.T.: Ultrasound-guided regional anesthesiacurrent state of the art. Anesthesiol. J. Am. Soc. Anesthesiol. 104(2), 368–373 (2006)Google Scholar
  8. 8.
    Johnson, C.R., Barr, R.C., Klein, S.M.: A computer model of electrical stimulation of peripheral nerves in regional anesthesia. Anesthesiol. J. Am. Soc. Anesthesiol. 106(2), 323–330 (2007)Google Scholar
  9. 9.
    Kuo, C.H., Dai, J.S.: Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery. J. Med. Dev. 6(2), 021008 (2012)CrossRefGoogle Scholar
  10. 10.
    Lanfranco, A.R., Castellanos, A.E., Desai, J.P., Meyers, W.C.: Robotic surgery: a current perspective. Ann. Surg. 239(1), 14 (2004)CrossRefGoogle Scholar
  11. 11.
    Locke, R.C., Patel, R.V.: Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 1900–1905. IEEE (2007)Google Scholar
  12. 12.
    Marhofer, P., Chan, V.W.: Ultrasound-guided regional anesthesia: current concepts and future trends. Anesth. Analg. 104(5), 1265–1269 (2007)CrossRefGoogle Scholar
  13. 13.
    Marhofer, P., Willschke, H., Kettner, S.: Current concepts and future trends in ultrasound-guided regional anesthesia. Curr. Opin. Anesthesiol. 23(5), 632–636 (2010)CrossRefGoogle Scholar
  14. 14.
    Marinho, M.M., Bernardes, M.C., Bó, A.P.: A programmable remote center-of-motion controller for minimally invasive surgery using the dual quaternion framework. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 339–344. IEEE (2014)Google Scholar
  15. 15.
    Mayer, H., Nagy, I., Knoll, A.: Kinematics and modelling of a system for robotic surgery. In: On Advances in Robot Kinematics, pp. 181–190. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Pham, C.D., Coutinho, F., Leite, A.C., Lizarralde, F., From, P.J., Johansson, R.: Analysis of a moving remote center of motion for robotics-assisted minimally invasive surgery. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1440–1446. IEEE (2015)Google Scholar
  17. 17.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA workshop on open source software, Kobe, Japan, vol. 3, p. 5 (2009)Google Scholar
  18. 18.
    Schneider, O., Troccaz, J.: A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments. Comput. Aided Surg. 6(6), 340–351 (2001)CrossRefGoogle Scholar
  19. 19.
    Tsui, B.C., Suresh, S.: Ultrasound imaging for regional anesthesia in infants, children, and adolescentsa review of current literature and its application in the practice of extremity and trunk blocks. Anesthesiol. J. Am. Soc. Anesthesiol. 112(2), 473–492 (2010)Google Scholar
  20. 20.
    Woodworth, G.E., Chen, E.M., Horn, J.L.E., Aziz, M.F.: Efficacy of computer-based video and simulation in ultrasound-guided regional anesthesia training. J. Clin. Anesth. 26(3), 212–221 (2014)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Alkhatib
    • 1
    Email author
  • Cyril Novales
    • 1
  • Laurence Nouaille
    • 1
  • Adel Hafiane
    • 1
  • Pierre Vieyres
    • 1
  1. 1.Laboratoire PRISME EA 4229Université d’OrléansBourgesFrance

Personalised recommendations