Dental Restorative Materials

  • Hamid Reza RezaieEmail author
  • Hassan Beigi Rizi
  • Mojdeh Mahdi Rezaei Khamseh
  • Andreas Öchsner
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 123)


Restorative dental materials are of great importance in dentistry for restoring and replacing injured or missed teeth with the purpose of simulating natural teeth functions besides providing translucency and tooth-like color shade. Restorative dental materials are produced as crowns, inlays, onlays, multi-unit fixed dental prostheses, and veneers. These materials are divided into two distinct categories, which are direct and indirect restorative materials.


  1. 1.
    Anusavice, K. J., Shen, C., & Rawls, H. R. (Eds.). (2012). Phillips’ science of dental materials. Elsevier Health Sciences.Google Scholar
  2. 2.
    Höland, W., Schweiger, M., Rheinberger, V. M., & Kappert, H. (2009). Bioceramics and their application for dental restoration. Advances in Applied Ceramics, 108(6), 373–380.Google Scholar
  3. 3.
    Powers, J. M., Sakaguchi, R. L., & Craig, R. G. (2012). Craig’s restorative dental materials/edited by Ronald L. Sakaguchi, John M. Powers. Philadelphia, PA: Elsevier/Mosby.Google Scholar
  4. 4.
    Bergmann, C. P., & Stumpf, A. (2013). Dental ceramics microstructure, properties and degradation, topics in mining, Metallurgy and Materials Engineering. Berlin, Heidelberg: Springer.Google Scholar
  5. 5.
    Zhang, Y., & Kelly, J. R. (2017). Dental ceramics for restoration and metal veneering. Dental Clinics of North America, 61(4), 797–819.Google Scholar
  6. 6.
    Zanelli, C., Raimondo, M., Guarini, G., & Dondi, M. (2011). The vitreous phase of porcelain stoneware: composition, evolution during sintering and physical properties. Journal of Non-Crystalline Solids, 357(16–17), 3251–3260.Google Scholar
  7. 7.
    Saint-Jean, S. J. (2014). Dental glasses and glass-ceramics. In Advanced Ceramics for Dentistry (pp. 255–277). Butterworth-Heinemann.Google Scholar
  8. 8.
    Ho, G. W., & Matinlinna, J. P. (2011). Insights on ceramics as dental materials. Part I: ceramic material types in dentistry. Silicon3(3), 109–115.Google Scholar
  9. 9.
    McLaren, E. A., & Cao, P. T. (2009). Ceramics in dentistry—part I: classes of materials. Inside dentistry, 5(9), 94–103.Google Scholar
  10. 10.
    Kelly, J. R. (2008). Dental ceramics: What is this stuff anyway? The Journal of the American Dental Association, 139, S4–S7.Google Scholar
  11. 11.
    Shenoy, A., & Shenoy, N. (2010). Dental ceramics: An update. Journal of conservative dentistry: JCD, 13(4), 195.Google Scholar
  12. 12.
    Denry, I., & Holloway, J. (2010). Ceramics for dental applications: a review. Materials, 3(1), 351–368.Google Scholar
  13. 13.
    Pollington, S., & van Noort, R. (2009). An update of ceramics in dentistry. Int J Clin Dent, 2(4), 283–307.Google Scholar
  14. 14.
    Höland, W., Schweiger, M., Watzke, R., Peschke, A., & Kappert, H. (2008). Ceramics as biomaterials for dental restoration. Expert Review of Medical Devices, 5(6), 729–745.Google Scholar
  15. 15.
    Conrad, H. J., Seong, W. J., & Pesun, I. J. (2007). Current ceramic materials and systems with clinical recommendations: a systematic review. The Journal of prosthetic dentistry, 98(5), 389–404.Google Scholar
  16. 16.
    Kelly, J. R., & Benetti, P. (2011). Ceramic materials in dentistry: historical evolution and current practice. Australian Dental Journal, 56, 84–96.Google Scholar
  17. 17.
    Silva, L. H. D., Miranda, R. B. D. P., Favero, S. S., Lohbauer, U., & Cesar, P. F. (2017). Dental ceramics: A review of new materials and processing methods. Brazilian oral research31.Google Scholar
  18. 18.
    Höland, W., Rheinberger, V., Apel, E., van’t Hoen, C., Höland, M., Dommann, A., … & Graf-Hausner, U. (2006). Clinical applications of glass-ceramics in dentistry. Journal of Materials Science: Materials in Medicine17(11), 1037–1042.Google Scholar
  19. 19.
    Denry, I., & Kelly, J. R. (2014). Emerging ceramic-based materials for dentistry. Journal of Dental Research, 93(12), 1235–1242.Google Scholar
  20. 20.
    de Carvalho Ramos, N., Campos, T. M. B., de La Paz, I. S., Machado, J. P. B., Bottino, M. A., Cesar, P. F., et al. (2016). Microstructure characterization and SCG of newly engineered dental ceramics. Dental Materials, 32(7), 870–878.Google Scholar
  21. 21.
    Raigrodski, A. J. (2004). Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. The Journal of Prosthetic Dentistry, 92(6), 557–562.Google Scholar
  22. 22.
    Denry, I., & Kelly, J. R. (2008). State of the art of zirconia for dental applications. Dental Materials, 24(3), 299–307.Google Scholar
  23. 23.
    Turon-Vinas, M., & Anglada, M. (2018). Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 34(3), 365–375.Google Scholar
  24. 24.
    Piconi, C., Condo, S. G., & Kosmač, T. (2014). Alumina-and zirconia-based ceramics for load-bearing applications. In Advanced ceramics for dentistry (pp. 219–253). Butterworth-Heinemann.Google Scholar
  25. 25.
    Yin, L., Song, X. F., Song, Y. L., Huang, T., & Li, J. (2006). An overview of in vitro abrasive finishing & CAD/CAM of bioceramics in restorative dentistry. International Journal of Machine Tools and Manufacture, 46(9), 1013–1026.Google Scholar
  26. 26.
    Hill, E. E. (2007). Dental cements for definitive luting: a review and practical clinical considerations. Dental Clinics of North America, 51(3), 643–658.Google Scholar
  27. 27.
    Wilson, A. D., & Nicholson, J. W. (2005). Acid-base cements: their biomedical and industrial applications. Cambridge University Press.Google Scholar
  28. 28.
    Sunico-Segarra, M., & Segarra, A. (2015). A practical clinical guide to resin cements. Berlin Heidelberg: Springer.Google Scholar
  29. 29.
    Albers, H. F. (2002). Tooth-colored restoratives: principles and techniques. PMPH-USA.Google Scholar
  30. 30.
    Kumar, M., & Kumari, S. (2016). Resin-modified Glass Ionomer Cements and its Use in Orthodontics-Concept Old is Gold: View Point. International Journal of Dental and Medical Speciality, 3(3), 10.Google Scholar
  31. 31.
    Wingo, K. (2018). A review of dental cements. Journal of veterinary dentistry, 35(1), 18–27.Google Scholar
  32. 32.
    McCabe, J. F., & Walls, A. W. (Eds.). (2013). Applied dental materials. Wiley.Google Scholar
  33. 33.
    Powers, J. M., & Wataha, J. C. (2015). Dental Materials-E-Book: Foundations and Applications. Elsevier Health Sciences.Google Scholar
  34. 34.
    Von Fraunhofer, J. A. (2013). Dental materials at a glance. Wiley.Google Scholar
  35. 35.
    Shelton, R. (Ed.). (2016). Biocompatibility of Dental Biomaterials. Woodhead Publishing.Google Scholar
  36. 36.
    Tabatabaian, F. (2019). Color aspect of monolithic zirconia restorations: A review of the literature. Journal of Prosthodontics, 28(3), 276–287.Google Scholar
  37. 37.
    de la Macorra, J. C., & Pradíes, G. (2002). Conventional and adhesive luting cements. Clinical Oral Investigations, 6(4), 198–204.Google Scholar
  38. 38.
    Lad, P. P., Kamath, M., Tarale, K., & Kusugal, P. B. (2014). Practical clinical considerations of luting cements: A review. Journal of international oral health: JIOH, 6(1), 116.Google Scholar
  39. 39.
    Wilson, A. D., Paddon, J. M., & Crisp, S. (1979). The hydration of dental cements. Journal of Dental Research, 58(3), 1065–1071.Google Scholar
  40. 40.
    Moshaverinia, A., Roohpour, N., Chee, W. W., & Schricker, S. R. (2011). A review of powder modifications in conventional glass-ionomer dental cements. Journal of Materials Chemistry, 21(5), 1319–1328.Google Scholar
  41. 41.
    Sidhu, S. K., & Nicholson, J. W. (2016). A review of glass-ionomer cements for clinical dentistry. Journal of functional biomaterials, 7(3), 16.Google Scholar
  42. 42.
    Mount, G. J. (2001). An atlas of glass-ionomer cements: a clinician’s guide. CRC Press.Google Scholar
  43. 43.
    Deb, S., & Chana, S. (2015). Biomaterials in relation to dentistry. In Biomaterials for Oral and Craniomaxillofacial Applications (Vol. 17, pp. 1–12). Karger Publishers.Google Scholar
  44. 44.
    Sidhu, S. K. (2011). Glass-ionomer cements restorative materials: a sticky subject? Australian Dental Journal, 56, 23–30.Google Scholar
  45. 45.
    Hafshejani, T. M., Zamanian, A., Venugopal, J. R., Rezvani, Z., Sefat, F., Saeb, M. R., … & Mozafari, M. (2017). Antibacterial glass-ionomer cements restorative materials: A critical review on the current status of extended release formulations. Journal of Controlled Release262, 317–328.Google Scholar
  46. 46.
    Noumbissi, S., Scarano, A., & Gupta, S. (2019). A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials, 12(3), 368.Google Scholar
  47. 47.
    Roberts, H. W., Berzins, D. W., Moore, B. K., & Charlton, D. G. (2009). Metal-ceramic alloys in dentistry: A review. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 18(2), 188–194.Google Scholar
  48. 48.
    Upadhyay, D., Panchal, M. A., Dubey, R. S., & Srivastava, V. K. (2006). Corrosion of alloys used in dentistry: A review. Materials Science and Engineering A, 432(1–2), 1–11.Google Scholar
  49. 49.
    Spencer, P., & Misra, A. (Eds.). (2016). Material-tissue Interfacial Phenomena: Contributions from Dental and Craniofacial Reconstructions. Woodhead Publishing.Google Scholar
  50. 50.
    Liu, X., Chen, S., Tsoi, J. K., & Matinlinna, J. P. (2017). Binary titanium alloys as dental implant materials—a review. Regenerative Biomaterials, 4(5), 315–323.Google Scholar
  51. 51.
    Gosavi, S., Gosavi, S., & Alla, R. (2013). Titanium: A Miracle metal in dentistry. Trends in Biomaterials & Artificial Organs, 27(1).Google Scholar
  52. 52.
    Park, Y. J., Song, Y. H., An, J. H., Song, H. J., & Anusavice, K. J. (2013). Cytocompatibility of pure metals and experimental binary titanium alloys for implant materials. Journal of Dentistry, 41(12), 1251–1258.Google Scholar
  53. 53.
    Song, Y. H., Kim, M. K., Park, E. J., Song, H. J., Anusavice, K. J., & Park, Y. J. (2014). Cytotoxicity of alloying elements and experimental titanium alloys by WST-1 and agar overlay tests. Dental Materials, 30(9), 977–983.Google Scholar
  54. 54.
    Meffert, R. M., Langer, B., & Fritz, M. E. (1992). Dental implants: a review. Journal of Periodontology, 63(11), 859–870.Google Scholar
  55. 55.
    Duraccio, D., Mussano, F., & Faga, M. G. (2015). Biomaterials for dental implants: current and future trends. Journal of Materials Science, 50(14), 4779–4812.Google Scholar
  56. 56.
    Özcan, M., & Hämmerle, C. (2012). Titanium as a reconstruction and implant material in dentistry: Advantages and pitfalls. Materials, 5(9), 1528–1545.Google Scholar
  57. 57.
    Seo, H. S., Kim, B. H., & Ko, Y. M. (2010). Fabrication of anodized titanium with immobilization of hyaluronic acid to improve biological performance. Progress in Organic Coatings, 69(1), 38–44.Google Scholar
  58. 58.
    Reclaru, L., Lüthy, H., Eschler, P. Y., Blatter, A., & Susz, C. (2005). Corrosion behaviour of cobalt–chromium dental alloys doped with precious metals. Biomaterials, 26(21), 4358–4365.Google Scholar
  59. 59.
    McCabe, J. F., & Walls, A. W. (Eds.). (2013). Applied dental materials. Wiley.Google Scholar
  60. 60.
    Bharti, R., Wadhwani, K. K., Tikku, A. P., & Chandra, A. (2010). Dental amalgam: An update. Journal of conservative dentistry: JCD, 13(4), 204.Google Scholar
  61. 61.
    Blackwood, D. J. (2003). Biomaterials: past successes and future problems.Google Scholar
  62. 62.
    Fathi, M., & Mortazavi, V. (2004). A review on dental amalgam corrosion and its consequences.Google Scholar
  63. 63.
    Moncada, G., Fernández, E., Mena, K., Martin, J., Vildósola, P., Junior, O. D. O., … & Gordan, V. V. (2015). Seal, replacement or monitoring amalgam restorations with occlusal marginal defects? Results of a 10-year clinical trial. Journal of dentistry, 43(11), 1371–1378.Google Scholar
  64. 64.
    Corti, C., & Holliday, R. (2009). Gold: Science and applications. CRC Press.Google Scholar
  65. 65.
    Knosp, H., Holliday, R. J., & Corti, C. W. (2003). Gold in dentistry: alloys, uses and performance. Gold Bulletin, 36(3), 93–102.Google Scholar
  66. 66.
    Kirkup, J. (1993). From flint to stainless steel: Observations on surgical instrument composition. Annals of the Royal College of Surgeons of England, 75(5), 365.Google Scholar
  67. 67.
    Vijayalakshmi, R. D., Nagachandran, K. S., Kummi, P., & Jayakumar, P. (2009). A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires-An in vitro study. Indian Journal of Dental Research, 20(4), 448.Google Scholar
  68. 68.
    Corradi, M., Di Schino, A., Borri, A., & Rufini, R. (2018). A review of the use of stainless steel for masonry repair and reinforcement. Construction and Building Materials, 181, 335–346.Google Scholar
  69. 69.
    Santander, S. A., & Ossa, C. M. L. (2015). Stainless Steel: Material Facts for the Orthodontic Practitioner. Revista Nacional de Odontología, 11(20).Google Scholar
  70. 70.
    Li, H. F., & Zheng, Y. F. (2016). Recent advances in bulk metallic glasses for biomedical applications. Acta Biomaterialia, 36, 1–20.Google Scholar
  71. 71.
    Thompson, S. A. (2000). An overview of nickel–titanium alloys used in dentistry. International Endodontic Journal, 33(4), 297–310.Google Scholar
  72. 72.
    Xu, X., He, L., Zhu, B., Li, J., & Li, J. (2017). Advances in polymeric materials for dental applications. Polymer Chemistry, 8(5), 807–823.Google Scholar
  73. 73.
    Lai, W. F., Oka, K., & Jung, H. S. (2015). Advanced functional polymers for regenerative and therapeutic dentistry. Oral Diseases, 21(5), 550–557.Google Scholar
  74. 74.
    Rokaya, D., Srimaneepong, V., Sapkota, J., Qin, J., Siraleartmukul, K., & Siriwongrungson, V. (2018). Polymeric materials and films in dentistry: An overview. Journal of advanced research, 14, 25–34.Google Scholar
  75. 75.
    Skirbutis, G., Dzingutė, A., Masiliūnaitė, V., Šulcaitė, G., & Žilinskas, J. (2017). A review of PEEK polymer’s properties and its use in prosthodontics. Stomatologija, 19(1), 19–23.Google Scholar
  76. 76.
    Rutkuniene, Z., Pervazaite, M., & Skirbutis, G. (2018, September). Modification of Polyetheretherketone Surface by Argon, Oxygen and Nitrogen Plasma for Dentistry Application. In International Conference on Global Research and Education (pp. 160–164). Springer, Cham.Google Scholar
  77. 77.
    Bathala, L., Majeti, V., Rachuri, N., Singh, N., & Gedela, S. (2019). The role of polyether ether Ketone (Peek) in dentistry–A Review. Journal of medicine and life, 12(1), 5.Google Scholar
  78. 78.
    Ali, U., Karim, K. J. B. A., & Buang, N. A. (2015). A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polymer Reviews, 55(4), 678–705.Google Scholar
  79. 79.
    Wypych, G. (2016). Handbook of polymers. Elsevier.Google Scholar
  80. 80.
    Raj, P. A., & Dentino, A. R. (2013). Denture polymers with antimicrobial properties: a review of the development and current status of anionic poly (methyl methacrylate) polymers. Future medicinal Chemistry, 5(14), 1635–1645.Google Scholar
  81. 81.
    Paxton, N. C., Allenby, M. C., Lewis, P. M., & Woodruff, M. A. (2019). Biomedical applications of polyethylene. European Polymer Journal.Google Scholar
  82. 82.
    Meiers, J. C., Kazemi, R. B., & Donadio, M. (2003). The influence of fiber reinforcement of composites on shear bond strengths to enamel. The Journal of prosthetic dentistry, 89(4), 388–393.Google Scholar
  83. 83.
    Vitale, M. C., Caprioglio, C., Martignone, A., Marchesi, U., & Botticelli, A. R. (2004). Combined technique with polyethylene fibers and composite resins in restoration of traumatized anterior teeth. Dental Traumatology, 20(3), 172–177.Google Scholar
  84. 84.
    Ganesh, M., & Tandon, S. (2006). Versatility of ribbond in contemporary dental practice. Trends Biomater Artif Organs, 20(1), 53–58.Google Scholar
  85. 85.
    Motisuki, C., Santos-Pinto, L., & Giro, E. M. A. (2005). Restoration of severely decayed primary incisors using indirect composite resin restoration technique. International Journal of Paediatric Dentistry, 15(4), 282–286.Google Scholar
  86. 86.
    Qualtrough, A. J., & Mannocci, F. (2003). Tooth-colored post systems: A review. Operative Dentistry, 28(1), 86–91.Google Scholar
  87. 87.
    Kargul, B., Çaglar, E., & Kabalay, U. (2005). Glass fiber-reinforced composite resin as fixed space maintainers in children: 12-month clinical follow-up. Journal of Dentistry for Children, 72(3), 109–112.Google Scholar
  88. 88.
    Freilich, M. A., Meiers, J. C., Duncan, J. P., Eckrote, K. A., & Goldberg, A. J. (2002). Clinical evaluation of fiber-reinforced fixed bridges. The Journal of the American Dental Association, 133(11), 1524–1534.Google Scholar
  89. 89.
    Harris, J. M. (1992). Introduction to biotechnical and biomedical applications of poly (ethylene glycol). In Poly (ethylene glycol) Chemistry (pp. 1–14). Springer, Boston, MA.Google Scholar
  90. 90.
    Peng, L., Chang, L., Liu, X., Lin, J., Liu, H., Han, B., et al. (2017). Antibacterial property of a polyethylene glycol-grafted dental material. ACS Applied Materials & Interfaces, 9(21), 17688–17692.Google Scholar
  91. 91.
    Zargar, V., Asghari, M., & Dashti, A. (2015). A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Reviews, 2(3), 204–226.Google Scholar
  92. 92.
    Arnaud, T. M. S., de Barros Neto, B., & Diniz, F. B. (2010). Chitosan effect on dental enamel de-remineralization: an in vitro evaluation. Journal of Dentistry, 38(11), 848–852.Google Scholar
  93. 93.
    Lendlein, A., & Kelch, S. (2002). Shape-memory polymers. Angewandte Chemie International Edition, 41(12), 2034–2057.Google Scholar
  94. 94.
    Nascimento, R. O. do, & Chirani, N. (2015). Shape-memory polymers for dental applications. In Shape Memory Polymers for Biomedical Applications (pp. 267–280). Woodhead Publishing.Google Scholar
  95. 95.
    Ferracane, J. L. (2011). Resin composite—state of the art. Dental Materials, 27(1), 29–38.Google Scholar
  96. 96.
    Curtis, R. V., & Watson, T. F. (Eds.). (2014). Dental biomaterials: imaging, testing and modelling. Elsevier.Google Scholar
  97. 97.
    Maas, M. S., Alania, Y., Natale, L. C., Rodrigues, M. C., Watts, D. C., & Braga, R. R. (2017). Trends in restorative composites research: what is in the future?. Brazilian oral research31.Google Scholar
  98. 98.
    Braga, R. R., Ballester, R. Y., & Ferracane, J. L. (2005). Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dental Materials, 21(10), 962–970.Google Scholar
  99. 99.
    Leprince, J. G., Palin, W. M., Hadis, M. A., Devaux, J., & Leloup, G. (2013). Progress in dimethacrylate-based dental composite technology and curing efficiency. Dental Materials, 29(2), 139–156.Google Scholar
  100. 100.
    García, A. H., Lozano, M. A. M., Vila, J. C., Escribano, A. B., & Galve, P. F. (2006). Composite resins. A review of the materials and clinical indications. Med Oral Patol Oral Cir Bucal11(2), E215–220.Google Scholar
  101. 101.
    Bayne, S. C. (2005). Dental biomaterials: where are we and where are we going? Journal of Dental Education, 69(5), 571–585.Google Scholar
  102. 102.
    Ilie, N., & Hickel, R. (2011). Resin composite restorative materials. Australian Dental Journal, 56, 59–66.Google Scholar
  103. 103.
    Moraes, R. R., Goncalves, L. D. S., Lancellotti, A. C., Consani, S., Correr-Sobrinho, L., & Sinhoreti, M. A. (2009). Nanohybrid resin composites: nanofiller loaded materials or traditional microhybrid resins? Operative dentistry, 34(5), 551–557.Google Scholar
  104. 104.
    Angerame, D., & De Biasi, M. (2018). Do nanofilled/nanohybrid composites allow for better clinical performance of direct restorations than traditional microhybrid composites?A systematic review. Operative dentistry, 43(4), E191–E209.Google Scholar
  105. 105.
    Brunthaler, A., König, F., Lucas, T., Sperr, W., & Schedle, A. (2003). Longevity of direct resin composite restorations in posterior teeth: a review. Clinical Oral Investigations, 7(2), 63–70.Google Scholar
  106. 106.
    Opdam, N. J. M., Van De Sande, F. H., Bronkhorst, E., Cenci, M. S., Bottenberg, P., Pallesen, U., … & Van Dijken, J. W. (2014). Longevity of posterior composite restorations: a systematic review and meta-analysis. Journal of Dental Research, 93(10), 943–949.Google Scholar
  107. 107.
    da Veiga, A. M. A., Cunha, A. C., Ferreira, D. M. T. P., da Silva Fidalgo, T. K., Chianca, T. K., Reis, K. R., et al. (2016). Longevity of direct and indirect resin composite restorations in permanent posterior teeth: A systematic review and meta-analysis. Journal of Dentistry, 54, 1–12.Google Scholar
  108. 108.
    Tsujimoto, A., Barkmeier, W. W., Fischer, N. G., Nojiri, K., Nagura, Y., Takamizawa, T., … & Miazaki, M. (2018). Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors. Japanese Dental Science Review54(2), 76–87.Google Scholar
  109. 109.
    Zhang, K., Baras, B., Lynch, C. D., Weir, M. D., Melo, M. A. S., Li, Y., … & Xu, H. H. (2018). Developing a new generation of therapeutic dental polymers to inhibit oral biofilms and protect teeth. Materials11(9), 1747.Google Scholar
  110. 110.
    Makvandi, P., Jamaledin, R., Jabbari, M., Nikfarjam, N., & Borzacchiello, A. (2018). Antibacterial quaternary ammonium compounds in dental materials: A systematic review. Dental Materials, 34(6), 851–867.Google Scholar
  111. 111.
    Scribante, A., Vallittu, P. K., Özcan, M., Lassila, L. V., Gandini, P., & Sfondrini, M. F. (2018). Travel beyond Clinical Uses of Fiber Reinforced Composites (FRCs) in Dentistry: A Review of Past Employments, Present Applications, and Future Perspectives. BioMed research international2018.Google Scholar
  112. 112.
    Khan, A. S., Azam, M. T., Khan, M., Mian, S. A., & Rehman, I. U. (2015). An update on glass fiber dental restorative composites: a systematic review. Materials Science and Engineering C, 47, 26–39.Google Scholar
  113. 113.
    Nicholson, J. W. (2007). Polyacid-modified composite resins (“compomers”) and their use in clinical dentistry. Dental Materials, 23(5), 615–622.Google Scholar
  114. 114.
    Mahamood, R. M., & Akinlabi, E. T. (2017). Functionally graded materials (pp. 16–18). Berlin: Springer.Google Scholar
  115. 115.
    Fujihara, K., Teo, K., Gopal, R., Loh, P. L., Ganesh, V. K., Ramakrishna, S., … & Chew, C. L. (2004). Fibrous composite materials in dentistry and orthopaedics: review and applications. Composites Science and Technology64(6), 775–788.Google Scholar
  116. 116.
    Bakar, W. Z. W., Basri, S. N., Jamaludin, S. N. S., & Sajjad, A. (2018). Functionally graded materials: an overview of dental applications. World Journal of Dentistry, 9(2), 137–144.Google Scholar
  117. 117.
    Mine, A., De Munck, J., Van Ende, A., Poitevin, A., Matsumoto, M., Yoshida, Y., … & Van Meerbeek, B. (2017). Limited interaction of a self-adhesive flowable composite with dentin.Google Scholar
  118. 118.
    Poitevin, A., De Munck, J., Van Ende, A., Suyama, Y., Mine, A., Peumans, M., & Van Meerbeek, B. (2013). Bonding effectiveness of self-adhesive composites to dentin and enamel. Dent.Google Scholar
  119. 119.
    Huyang, G., Debertin, A. E., & Sun, J. (2016). Design and development of self-healing dental composites. Materials and Design, 94, 295–302.Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamid Reza Rezaie
    • 1
    Email author
  • Hassan Beigi Rizi
    • 2
  • Mojdeh Mahdi Rezaei Khamseh
    • 3
  • Andreas Öchsner
    • 4
  1. 1.Department of Engineering Materials, Ceramic and Biomaterial DivisionIran University of Science and Technology (IUST)TehranIran
  2. 2.Department of Engineering Materials, Ceramic and Biomaterial DivisionIran University of Science and Technology (IUST)TeheranIran
  3. 3.Department of Engineering Materials, Ceramic and Biomaterial DivisionIran University of Science and Technology (IUST)TeheranIran
  4. 4.Faculty of Mechanical EngineeringEsslingen University of Applied SciencesEsslingen am NeckarGermany

Personalised recommendations