Advertisement

Introduction

  • Marco TognonEmail author
  • Antonio Franchi
Chapter
  • 4 Downloads
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 140)

Abstract

This chapter provides a global overview of the topic treated in this book. In particular, we shall firstly contextualize the work in the wide panorama of aerial robotics, and more precisely, of aerial physical interaction. Afterword, we will focus our attention to the topic of this work, i.e., tethered aerial vehicles. We shall cover the scientific and practical motivations that brought us analyzing these kind of systems, listing the several objectives and challenges at which we aim in this work. We finally provide a reader’s guide describing in a detailed way the organization and content of the book.

References

  1. 1.
    Feron, E., Johnson, E.N.: Aerial robotics. In: Springer Handbook of Robotics, pp. 1009–1029. Springer (2008)Google Scholar
  2. 2.
    Economist, T.: Welcome to the Drone Age, Sept (2015). [Online]Google Scholar
  3. 3.
    Morin, P.: Modeling and control of convertible micro air vehicles. In: 2015 10th International Workshop on Robot Motion and Control (RoMoCo), pp. 188–198. IEEE (2015)Google Scholar
  4. 4.
    Hua, M.-D., Hamel, T., Morin, P., Samson, C.: Control of VTOL vehicles with thrust-tilting augmentation. Automatica 52, 1–7 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Plinval, H., Morin, P., Mouyon, P., Hamel, T.: Visual servoing for underactuated VTOL UAVs: a linear, homography-based framework. Int. J. Robust Nonlinear Control 24(16), 2285–2308 (2014)CrossRefGoogle Scholar
  6. 6.
    Faessler, M., Franchi, A., Scaramuzza, D.: Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Autom. Lett. 3(2), 620–626 (2018)CrossRefGoogle Scholar
  7. 7.
    Lee, T., Leoky, M., McClamroch, N.H.: Geometric tracking control of a quadrotor UAV on SE(3). In: 49th IEEE Conference on Decision and Control, pp. 5420–5425. Atlanta, GA, Dec (2010)Google Scholar
  8. 8.
    Ollero, A., Merino, L.: Control and perception techniques for aerial robotics. Annu. Rev. Control 28(2), 167–178 (2004)CrossRefGoogle Scholar
  9. 9.
    Valavanis, K.P., Vachtsevanos, G.J.: Future of unmanned aviation. In: Handbook of Unmanned Aerial Vehicles, pp. 2993–3009. Springer (2015)Google Scholar
  10. 10.
    Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)CrossRefGoogle Scholar
  11. 11.
    Hua, M.-D., Hamel, T., Morin, P., Samson, C.: Introduction to feedback control of underactuated VTOL vehicles: a review of basic control design ideas and principles. IEEE Control Syst. Mag. 33(1), 61–75 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hua, M.-D., Hamel, T., Morin, P., Samson, C.: A control approach for thrust-propelled underactuated vehicles and its application to VTOL drones. IEEE Trans. Autom. Control 54(8), 1837–1853 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nguyen, H., Lee, D.: Hybrid force/motion control and internal dynamics of quadrotors for tool operation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3458–3464, Tokyo, Japan, Nov (2013)Google Scholar
  14. 14.
    Bartelds, T., Capra, A., Hamaza, S., Stramigioli, S., Fumagalli, M.: Compliant aerial manipulators: toward a new generation of aerial robotic workers. IEEE Robot. Autom. Lett. 1(1), 477–483 (2016)CrossRefGoogle Scholar
  15. 15.
    Gioioso, G., Mohammadi, M., Franchi, A., Prattichizzo, D.: A force-based bilateral teleoperation framework for aerial robots in contact with the environment. In: 2015 IEEE International Conference on Robotics and Automation, pp. 318–324, Seattle, WA, May (2015)Google Scholar
  16. 16.
    Mellinger, D., Lindsey, Q., Shomin, M., Kumar, V.: Design, modeling, estimation and control for aerial grasping and manipulation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2668–2673, San Francisco, CA, Sept (2011)Google Scholar
  17. 17.
    Mellinger, D., Shomin, M., Michael, N., Kumar, V.: Cooperative grasping and transport using multiple quadrotors. In: 10th International Symposium on Distributed Autonomous Robotic Systems, pp. 545–558, Lausanne, Switzerland, Nov (2010)Google Scholar
  18. 18.
    Gioioso, G., Salvietti, G., Franchi, A., Malvezzi, M., Scheggi, S., Meli, L., Ryll, M., Bülthoff, H.H., Prattichizzo, D.: The flying hand: a teleoperation framework for cooperative aerial grasping and transportation. In: Automatica.it 2014, Convegno Annuale dei Docenti e Ricercatori Italiani in Automatica, Bergamo, Italy, Sept (2014)Google Scholar
  19. 19.
    Staub, N., Mohammadi, M., Bicego, D., Prattichizzo, D., Franchi, A.: Towards robotic MAGMaS: multiple aerial-ground manipulator systems. In: 2017 IEEE International Conference on Robotics and Automation, Singapore, May (2017)Google Scholar
  20. 20.
    Dai, S., Lee, T., Bernstein, D.S.: Adaptive control of a quadrotor UAV transporting a cable-suspended load with unknown mass. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 6149–6154. IEEE (2014)Google Scholar
  21. 21.
    Palunko, I., Cruz, P., Fierro, R.: Agile load transportation: safe and efficient load manipulation with aerial robots. IEEE Robot. Autom. Mag. 19(3), 69–79 (2012)CrossRefGoogle Scholar
  22. 22.
    Bernard, M., Kondak, K., Maza, I., Ollero, A.: Autonomous transportation and deployment with aerial robots for search and rescue missions. J. Field Robot. 28(6), 914–931 (2011)CrossRefGoogle Scholar
  23. 23.
    Sreenath, K., Lee, T., Kumar, V.: Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 2269–2274. IEEE (2013)Google Scholar
  24. 24.
    Palunko, I., Faust, A., Cruz, P., Tapia, L., Fierro, R.: A reinforcement learning approach towards autonomous suspended load manipulation using aerial robots. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4896–4901. IEEE (2013)Google Scholar
  25. 25.
    Sreenath, K., Michael, N., Kumar, V.: Trajectory generation and control of a quadrotor with a cable-suspended load-a differentially-flat hybrid system. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4888–4895. IEEE (2013)Google Scholar
  26. 26.
    Foehn, P., Falanga, D., Kuppuswamy, N., Tedrake, R., Scaramuzza, D.: Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload. In: Robotics: Science and Systems, pp. 1–10 (2017)Google Scholar
  27. 27.
    Sreenath, K., Kumar, V.: Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. In: Robotics: Science and Systems, Berlin, Germany, June (2013)Google Scholar
  28. 28.
    Manubens, M., Devaurs, D., Ros, L., Cortés, J.: Motion planning for 6-D manipulation with aerial towed-cable systems. In: Robotics: Science and Systems, p. 2013. Germany, May, Berlin (2013)Google Scholar
  29. 29.
    Maza, I., Kondak, K., Bernard, M., Ollero, A.: Multi-UAV cooperation and control for load transportation and deployment. J. Intell. Robot. Syst. 57(1–4), 417–449 (2010)CrossRefGoogle Scholar
  30. 30.
    Gabellieri, C., Tognon, M., Sanalitro, D., Palottino, L., Franchi, A.: A study on force-based collaboration in swarms. Swarm Intell. 14, 57–82 (2020)CrossRefGoogle Scholar
  31. 31.
    Tognon, M., Gabellieri, C., Pallottino, L., Franchi, A.: Aerial co-manipulation with cables: the role of internal force for equilibria, stability, and passivity. IEEE Robot. Autom. Lett. Spec. Issue Aerial Manip. 3(3), 2577–2583 (2018)Google Scholar
  32. 32.
    Sanalitro, D., Savino, H.J., Tognon, M., Cortés, J., Franchi, A.: Full-pose manipulation control of a cable-suspended load with multiple UAVs under uncertainties. Under review in IEEE Robotics and Automation Letters (2020)Google Scholar
  33. 33.
    Sandino, L.A., Bejar, M., Kondak, K., Ollero, A.: Advances in modeling and control of tethered unmanned helicopters to enhance hovering performance. J. Intell. Robot. Syst. 73(1–4), 3–18 (2014)CrossRefGoogle Scholar
  34. 34.
    Lupashin, S., D’Andrea, R.: Stabilization of a flying vehicle on a taut tether using inertial sensing. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2432–2438, Tokyo, Japan, Nov (2013)Google Scholar
  35. 35.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling. Springer, Planning and Control (2009)CrossRefGoogle Scholar
  36. 36.
    Ruggiero, F., Trujillo, M.A., Cano, R., Ascorbe, H., Viguria, A., Peréz, C., Lippiello, V., Ollero, A., Siciliano, B.: A multilayer control for multirotor UAVs equipped with a servo robot arm. In: 2015 IEEE International Conference on Robotics and Automation, pp. 4014–4020, Seattle, WA, May (2015)Google Scholar
  37. 37.
    Yang, H., Lee, D.J.: Dynamics and control of quadrotor with robotic manipulator. In: 2014 IEEE International Conference on Robotics and Automation, pp. 5544–5549, Hong Kong, China, May (2014)Google Scholar
  38. 38.
    Yüksel, B., Staub, N., Franchi, A.: Aerial robots with rigid/elastic-joint arms: single-joint controllability study and preliminary experiments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1667–1672, Daejeon, South Korea, Oct (2016)Google Scholar
  39. 39.
    Mersha, A.Y., Stramigioli, S., Carloni, R.: Exploiting the dynamics of a robotic manipulator for control of UAVs. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1741–1746. IEEE (2014)Google Scholar
  40. 40.
    Ruggiero, F., Lippiello, V., Ollero, A.: Aerial manipulation: a literature review. IEEE Robot. Autom. Lett. 3(3), 1957–1964 (2018)CrossRefGoogle Scholar
  41. 41.
    Rajappa, S., Ryll, M., Bülthoff, H.H., Franchi, A.: Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE International Conference on Robotics and Automation, pp. 4006–4013, Seattle, WA, May (2015)Google Scholar
  42. 42.
    Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., Franchi, A.: 6D physical interaction with a fully actuated aerial robot. In: 2017 IEEE International Conference on Robotics and Automation, pp. 5190–5195, Singapore, May (2017)Google Scholar
  43. 43.
    Boeuf, A., Cortés, J., Alami, R., Siméon, T.: Enhancing sampling-based kinodynamic motion planning for quadrotors. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2447–2452, Hamburg, Germany, Sept (2015)Google Scholar
  44. 44.
    Lee, H., Kim, H., Kim, H.J.: Planning and control for collision-free cooperative aerial transportation. IEEE Trans. Autom. Sci, Eng (2016)Google Scholar
  45. 45.
    Fink, J., Michael, N., Kim, S., Kumar, V.: Planning and control for cooperative manipulation and transportation with aerial robots. Int. J. Robot. Res. 30(3), 324–334 (2011)CrossRefGoogle Scholar
  46. 46.
    Choi, S.Y., Choi, B.H., Jeong, S.Y., Gu, B.W., Yoo, S.J., Rim, C.T.: Tethered aerial robots using contactless power systems for extended mission time and range. In: Energy Conversion Congress and Exposition (ECCE), 2014 IEEE, pp. 912–916. IEEE (2014)Google Scholar
  47. 47.
    Muttin, F.: Umbilical deployment modeling for tethered UAV detecting oil pollution from ship. Appl. Ocean Res. 33(4), 332–343 (2011)CrossRefGoogle Scholar
  48. 48.
    Pinkney, M.F., Hampel, D., DiPierro, S.: Unmanned aerial vehicle (UAV) communications relay. In: Military Communications Conference, 1996, vol. 1, pp. 47–51, Oct (1996)Google Scholar
  49. 49.
    Sandino, L., Santamaria, D., Bejar, M., Viguria, A., Kondak, K., Ollero, A.: Tether-guided landing of unmanned helicopters without GPS sensors. In: 2014 IEEE International Conference on Robotics and Automation, pp. 3096–3101, Hong Kong, China, May (2014)Google Scholar
  50. 50.
    Tognon, M., Dash, S.S., Franchi, A.: Observer-based control of position and tension for an aerial robot tethered to a moving platform. IEEE Robot. Autom. Lett. 1(2), 732–737 (2016)CrossRefGoogle Scholar
  51. 51.
    Tognon, M., Testa, A., Rossi, E., Franchi, A.: Takeoff and landing on slopes via inclined hovering with a tethered aerial robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1702–1707, Daejeon, South Korea, Oct (2016)Google Scholar
  52. 52.
    Oh, S.-R., Pathak, K., Agrawal, S.K., Pota, H.R., Garrett, M.: Approaches for a tether-guided landing of an autonomous helicopter. IEEE Trans. Robot. 22(3), 536–544 (2006)CrossRefGoogle Scholar
  53. 53.
    EC-SAFEMOBIL. EU Coll. Proj. FP7-ICT 288082. http://www.ec-safemobil-project.eu/
  54. 54.
    Alarcón, F., García, M., Maza, I., Viguria, A., Ollero, A.: A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs. SensS. 19(4), 886 (2019)CrossRefGoogle Scholar
  55. 55.
    Sandino, Luis, A., Santamaria, D., Bejar, M., Kondak, K., Viguria, A., Ollero, A.: First experimental results on enhancing hovering performance of unmanned helicopters by using a tethered setup. Robot. Auton. Syst. 79(4), 147–155 (2016)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.LAAS-CNRSToulouseFrance
  2. 2.University of TwenteEnschedeThe Netherlands

Personalised recommendations