Reconstructing the Optical Parameters of a Layered Medium with Optical Coherence Elastography

  • Peter ElbauEmail author
  • Leonidas Mindrinos
  • Leopold Veselka
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 328)


In this work we consider the inverse problem of reconstructing the optical properties of a layered medium from an elastography measurement where optical coherence tomography is used as the imaging method. We hereby model the sample as a linear dielectric medium so that the imaging parameter is given by its electric susceptibility, which is a frequency- and depth-dependent parameter. Additionally to the layered structure (assumed to be valid at least in the small illuminated region), we allow for small scatterers which we consider to be randomly distributed, a situation which seems more realistic compared to purely homogeneous layers. We then show that a unique reconstruction of the susceptibility of the medium (after averaging over the small scatterers) can be achieved from optical coherence tomography measurements for different compression states of the medium.


Optical coherence tomography Optical coherence elastography Inverse problem Parameter identification 


65J22 65M32 78A46 



This work was made possible by the greatly appreciated support of the Austrian Science Fund (FWF) via the special research programme SFB F68 “Tomography Across the Scales”: Peter Elbau and Leopold Veselka have been supported via the subproject F6804-N36 “Quantitative Coupled Physics Imaging”, and Leonidas Mindrinos acknowledges support from the subproject F6801-N36.


  1. 1.
    Ammari, H., Bretin, E., Millien, P., Seppecher, L., Seo, J.K.: Mathematical modeling in full-field optical coherence elastography. SIAM J. Appl. Math. 75(3), 1015–1030 (2015)Google Scholar
  2. 2.
    Ammari, H., Romero, F., Shi, C.: A signal separation technique for sub-cellular imaging using dynamic optical coherence tomography. Multiscale Model. Simul. 15(3), 1155–1175 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brezinski, M.E.: Optical Coherence Tomography Principles and Applications. Academic Press, New York (2006)Google Scholar
  4. 4.
    Drexler, W., Fujimoto, J.G.: Optical Coherence Tomography: Technology and Applications, 2nd edn. Springer International Publishing, Switzerland (2015)CrossRefGoogle Scholar
  5. 5.
    Drexler, W., Hubmer, S., Krainz, L., Neubauer, A., Scherzer, O., Schmid, J., Sherina, E.: Lamé parameter estimation from static displacement field measurements. In: Burger, M., Hahn, B., Quinto, E.T. (eds) Oberwolfach Conference: Tomographic Inverse Problems: Theory and Applications, Oberwolfach reports, pp. 74–76. EMS Publishing House (2019)Google Scholar
  6. 6.
    Elbau, P., Mindrinos, L., Scherzer, O.: Mathematical methods of optical coherence tomography. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging, pp. 1169–1204. Springer, New York (2015)CrossRefGoogle Scholar
  7. 7.
    Elbau, P., Mindrinos, L., Scherzer, O.: The inverse scattering problem for orthotropic media in polarization-sensitive optical coherence tomography. GEM. Int. J. Geomath. 9(1), 145–165 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Elbau, P., Mindrinos, L., Veselka, L.: Quantitative OCT reconstructions for dispersive media. In: Kaltenbacher, B., Wald, A., Schuster, T. (eds) Time-dependent problems in imaging and parameter identification, to appear. Springer, Heidelberg (2020)Google Scholar
  9. 9.
    Nahas, A., Bauer, M., Roux, S., Boccara, A.C.: 3D static elastography at the micrometer scale using full field oct. Biomed. Opt. Express 4(10), 2138–2149 (2013)CrossRefGoogle Scholar
  10. 10.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)zbMATHGoogle Scholar
  11. 11.
    Santos, M., Araüjo, A., Barbeiro, S., Cramelo, F., Correia, A., Marques, M.I., Morgado, M., Pinto, L., Serranho, P., Bernardes, A.: Maxwell’s equations based 3d model of light scattering in the retina. In: 4th Portuguese Meeting on Bioengineering (ENBENG), p. 5. IEEE (2015)Google Scholar
  12. 12.
    Sun, C., Standish, B.A., Yang, V.: Optical coherence elastography: current status and future applications. J. Biomed. Opt. 16(4), 1–13 (2011)CrossRefGoogle Scholar
  13. 13.
    Tricoli, U., Carminati, R.: Modeling of full-field optical coherence tomography in scattering media. J. Opt. Soc. Am. A 36(11), C122–C129 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Peter Elbau
    • 1
    Email author
  • Leonidas Mindrinos
    • 1
  • Leopold Veselka
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations