Thermoacoustic Applications

  • S. K. PatchEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 328)


This conference paper provides a cursory overview of thermoacoustic phenomena and attempts to highlight aspects that may be unfamiliar to the mathematical community or could benefit from more rigorous mathematical analysis. A new clinical application, thermoacoustic range verification during particle therapy, is presented. The goal is to ground expectations and generate further interest in thermoacoustics within the mathematical community.


Thermoacoustic Spherical radon transform Time reversal 





Many thanks to Rutherford Cancer Centres for access to their proton therapy equipment as well as Rutherford and IBA staff for support collecting data presented in Figs. 4, 5. In particular, thanks to Dr. Rudi Labarbe of IBA for facilitating those experiments.


  1. 1.
    Bell, A.: Production of sound by radiant energy. Manuf. Build. 13, 156–158 (1881)Google Scholar
  2. 2.
    Frey, A.: Human auditory system response to modulated electromagnetic energy. J. Appl. Physiol. 17, 689–692 (1962)CrossRefGoogle Scholar
  3. 3.
    Heiser, D.: An Investigation of Photoacoustic Spectroscopy as a Technique for Measuring Diesel Particulate Emissions. US Environmental Protection Agency (1980)Google Scholar
  4. 4.
    Norton, S., Linzer, M.: Ultrasonic reflectivity imaging in three dimensions: reconstruction with spherical transducer arrays. Ultrason. Imaging 1, 210–239 (1979)CrossRefGoogle Scholar
  5. 5.
    Finch, D., Patch, S.K.: Rakesh: determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35, 1213–1240 (2003)CrossRefGoogle Scholar
  6. 6.
    Patch, S.K.: Thermoacoustic tomography-consistency conditions and the partial scan problem. Phys. Med. Biol. 49, 2305–2315 (2004)CrossRefGoogle Scholar
  7. 7.
    Xu, M., Wang, L.V.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706 (2005). Scholar
  8. 8.
    John, F.: Duhamel’s principle and the general Cauchy problem. In: Partial Differential Equations, pp. 135–138. Springer, New York, NY (1981)Google Scholar
  9. 9.
    Gabriel, C., Gabriel, S., Corthout, E.: The dielectric properties of biological tissues: I. literature survey. Phys. Med. Biol. 41, 2231–2249 (1996)Google Scholar
  10. 10.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996)Google Scholar
  11. 11.
    Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293 (1996).
  12. 12.
    Kavanagh, J.P., Darby, C., Costello, C.B.: The response of seven prostatic fluid components to prostatic disease. Int. J. Androl. 5, 487–496 (1982)CrossRefGoogle Scholar
  13. 13.
    Costello, L.C., Franklin, R.B.: Prostatic fluid electrolyte composition for the screening of prostate cancer: a potential solution to a major problem. Prostate Cancer Prostatic Dis. 12, 17–24 (2009). Scholar
  14. 14.
    NEMA: NEMA Standards Publication MS 10-2006. Determination of Local Specific Absorption Rate (SAR) in Diagnostic Magnetic Resonance Imaging (MRI). (2006)Google Scholar
  15. 15.
    Patch, S., Hull, D., Thomas, M., Griep, S., Jacobsohn, K., See, W.: Thermoacoustic contrast of prostate cancer due to heating by very high frequency irradiation. Phys. Med. Biol. 60, 689–708 (2015). Scholar
  16. 16.
    Patch, S.K., Hull, D., See, W.A., Hanson, G.W.: Toward quantitative whole organ thermoacoustics with a clinical array plus one very low-frequency channel applied to prostate cancer imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63, 245–255 (2016). Scholar
  17. 17.
    Patch, S.K., Yan, L.: Object orientation in RF field determines thermoacoustic contrast. Presented at the Proc. SPIE February 24 (2009)Google Scholar
  18. 18.
    Li, C., Pramanik, M., Ku, G., Wang, L.V.: Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys. Rev. E 77, 031923 (2008). Scholar
  19. 19.
    Kuchment, P., Kunyansky, L.: Mathematics of photoacoustic and thermoacoustic tomography. In: Scherzer, O. (ed.) Handbook of Mathematical Methods in Imaging. Springer, New York (2011)zbMATHGoogle Scholar
  20. 20.
    Wang, L.V., Wu, H.-I.: Biomedical optics: principles and imaging. (2008)Google Scholar
  21. 21.
    Beard, P.: Biomedical photoacoustic imaging. Interface Focus 1, 602–631 (2011). Scholar
  22. 22.
    Askariyan, G.A., Dolgoshein, B.A., Kalinovsky, A.N., Mokhov, N.V.: Acoustic detection of high energy particle showers in water. Nucl. Instrum. Methods 164, 267–278 (1979). Scholar
  23. 23.
    Sulak, L., Armstrong, R., Baranger, H., Bregman, M., Levi, M., Mael, D., Strait, J., Bowen, T., Pifer, A., Polakos, P., Bradner, H., Jones, W., Learned, J.: Experimental studies of the acoustic signature of proton beams traversing fluid media. Nucl. Instrum. Methods 161, 203–217 (1979)CrossRefGoogle Scholar
  24. 24.
    Hayakawa, Y., Tada, J., Arai, N., Hosono, K., Sato, M., Wagai, T., Tsuji, H., Tsujii, H.: Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam. Radiat. Oncol. Invest. 3, 42–45 (1995)CrossRefGoogle Scholar
  25. 25.
    Alsanea, F., Moskvin, V., Stantz, K.M.: Feasibility of RACT for 3D dose measurement and range verification in a water phantom. Med. Phys. 42, 937–946 (2015). Scholar
  26. 26.
    Ziegler, J., Ziegler, M., Biersack, J.: SRIM: the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B 268, 1818–1823 (2010). Scholar
  27. 27.
    Treeby, B.E., Cox, B.T.: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields. J. Biomed. Opt. 15, 021314 (2010)CrossRefGoogle Scholar
  28. 28.
    Patch, S.K., Hoff, D.E.M., Webb, T.B., Sobotka, L.G., Zhao, T.: Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator-specific time structure: a simulation study. Med. Phys. 45, 783–793 (2018). Scholar
  29. 29.
    Lehrack, S., Assmann, W., Bertrand, D., Henrotin, S., Herault, J., Heymans, V., Stappen, F.V., Thirolf, P.G., Vidal, M., Van de Walle, J., Parodi, K.: Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron. Phys. Med. Biol. 62, L20 (2017)Google Scholar
  30. 30.
    Hickling, S., Xiang, L., Jones, K.C., Parodi, K., Assmann, W., Avery, S., Hobson, M., El Naqa, I.: Ionizing radiation-induced acoustics for radiotherapy and diagnostic radiology applications. Med. Phys. 45, e707–e721 (2018). Scholar
  31. 31.
    Patch, S.K., Santiago-Gonzalez, D., Mustapha, B.: Thermoacoustic range verification in the presence of acoustic heterogeneity and soundspeed errors: robustness relative to ultrasound image of underlying anatomy. Med. Phys. (2018). Scholar
  32. 32.
    Da Silva, Anabela, Handschin, Charles, Metwally, Khaled, Garci, Houssem, Riedinger, Christophe, Mensah, Serge, Akhouayri, Hassan: Taking advantage of acoustic inhomogeneities in photoacoustic measurements. J. Biomed. Opt. 22, 1–10 (2017)CrossRefGoogle Scholar
  33. 33.
    Yu, Y., Li, Z., Zhang, D., Xing, L., Peng, H.: Simulation studies of time reversal-based protoacoustic reconstruction for range and dose verification in proton therapy. Med. Phys. 46, 3649–3662 (2019). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Physics, UW-Milwaukee and Acoustic Range EstimatesMilwaukeeUSA

Personalised recommendations