Quantum Solution for the 3-SAT Problem Based on IBM Q

  • Ying Zhang
  • Yu-xiang Bian
  • Qiang Fan
  • Junxiu ChenEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 322)


Quantum computing is currently considered to be a new type of computing model that has a subversive impact on the future. Based on its leading information and communication technology advantages, IBM launched IBM Q Experience cloud service platform, and achieved phased research results in the quantum simulator and programming framework. In this paper, we propose a quantum solution for the 3-SAT problem, which includes three steps: constructing the initial state, computing the unitary \(U_f\) implementing the black-box function f and performing the inversion about the average. In addition, the corresponding experimental verification for an instance of the Exactly-1 3-SAT problem with QISKit, which can connect to IBM Q remotely, is depicted. The experimental result not only show the feasibility of the quantum solution, but also serve to evaluate the functionality of IBM Q devices.


Quantum computing 3-SAT problem IBM Q QISKit Grover algorithm 


  1. 1.
    Feynman, R.P.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982). Scholar
  2. 2.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. Ser. A (Math. Phys. Sci.) 439(1907), 553–558 (1992)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of ACM Symposium on the Theory of Computing, pp. 212–219 (1996)Google Scholar
  5. 5.
    Liu, Z.-H., Chen, H.-W., Xu, J., Liu, W.-J., Li, Z.-Q.: High-dimensional deterministic multiparty quantum secret sharing without unitary operations. Quantum Inf. Process. 11(6), 1785–1795 (2011). Scholar
  6. 6.
    Chen, X.B., Tang, X., Xu, G., Dou, Z., Chen, Y.L., Yang, Y.X.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17(9), 225 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Huang, W., Su, Q., Liu, B., He, Y.H., Fan, F., Xu, B.J.: Efficient multiparty quantum key agreement with collective detection. Sci. Rep. 7(1), 15264 (2017)CrossRefGoogle Scholar
  8. 8.
    Liu, W.J., Xu, Y., Yang, C.N., Gao, P.P., Yu, W.B.: An efficient and secure arbitrary N-party quantum key agreement protocol using bell states. Int. J. Theor. Phys. 57(1), 195–207 (2018). Scholar
  9. 9.
    Liu, W.J., Chen, H.W., Li, Z.Q., Liu, Z.H.: Efficient quantum secure direct communication with authentication. Chin. Phys. Lett. 25(7), 2354–2357 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, W.J., Chen, H.W., Ma, T.H., Li, Z.Q., Liu, Z.H., Hu, W.B.: An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication. Chin. Phys. B 18(10), 4105–4109 (2009)CrossRefGoogle Scholar
  11. 11.
    Xu, G., Chen, X.-B., Li, J., Wang, C., Yang, Y.-X., Li, Z.: Network coding for quantum cooperative multicast. Quantum Inf. Process. 14(11), 4297–4322 (2015). Scholar
  12. 12.
    Liu, W., Liu, C., Wang, H., Jia, T.: Quantum private comparison: a review. IETE Tech. Rev. 30(5), 439–445 (2013)CrossRefGoogle Scholar
  13. 13.
    Liu, W.J., Liu, C., Liu, Z.H., Liu, J.F., Geng, H.T.: Same initial states attack in Yang et al.’s quantum private comparison protocol and the improvement. Int. J. Theor. Phys. 53(1), 271–276 (2014)CrossRefGoogle Scholar
  14. 14.
    Liu, W.J., Liu, C., Chen, H.W., Li, Z.Q., Liu, Z.H.: Cryptanalysis and improvement of quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 62(2), 210–214 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, W.-J., Liu, C., Wang, H., Liu, J.-F., Wang, F., Yuan, X.-M.: Secure quantum private comparison of equality based on asymmetric W state. Int. J. Theor. Phys. 53(6), 1804–1813 (2014). Scholar
  16. 16.
    Liu, W.-J., et al.: Multiparty quantum sealed-bid auction using single photons as message carrier. Quantum Inf. Process. 15(2), 869–879 (2015). Scholar
  17. 17.
    Liu, W.J., Wang, F., Ji, S., Qu, Z.G., Wang, X.J.: Attacks and improvement of quantum sealed-bid auction with EPR pairs. Commun. Theor. Phys. 61(6), 686–690 (2014)CrossRefGoogle Scholar
  18. 18.
    Liu, W.J., Chen, Z.-F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54(2), 472–483 (2015). Scholar
  19. 19.
    Chen, X.-B., Sun, Y.-R., Xu, G., Jia, H.-Y., Qu, Z., Yang, Y.-X.: Controlled bidirectional remote preparation of three-qubit state. Quantum Inf. Process. 16(10), 1–29 (2017). Scholar
  20. 20.
    Qu, Z.G., Wu, S.Y., Wang, M.M., Sun, L., Wang, X.J.: Effect of quantum noise on deterministic remote state preparation of an arbitrary two-particle state via various quantum entangled channels. Quantum Inf. Process. 16(306), 1–25 (2017)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Wang, M.M., Yang, C., Mousoli, R.: Controlled cyclic remote state preparation of arbitrary qubit states. CMC-Comput. Mater. Continua 55(2), 321–329 (2018)Google Scholar
  22. 22.
    Qu, Z., Cheng, Z., Liu, W., Wang, X.: A novel quantum image steganography algorithm based on exploiting modification direction. Multimedia Tools Appl. 78(7), 7981–8001 (2018). Scholar
  23. 23.
    Qu, Z., Chen, S., Ji, S., Ma, S., Wang, X.: Anti-noise bidirectional quantum steganography protocol with large payload. Int. J. Theor. Phys. 57(6), 1903–1927 (2018). Scholar
  24. 24.
    Qu, Z.G., Zhu, T.C., Wang, J.W., Wang, X.J.: A novel quantum stegonagraphy based on brown states. CMC-Comput. Mater. Continua 56(1), 47–59 (2018)Google Scholar
  25. 25.
    Liu, W.-J., Chen, Z.-Y., Ji, S., Wang, H.-B., Zhang, J.: Multi-party semi-quantum key agreement with delegating quantum computation. Int. J. Theor. Phys. 56(10), 3164–3174 (2017). Scholar
  26. 26.
    Liu, W.J., Chen, Z.Y., Liu, J.S., Su, Z.F., Chi, L.H.: Full-blind delegating private quantum computation. CMC-Comput. Mater. Continua 56(2), 211–223 (2018)Google Scholar
  27. 27.
    Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. eprint arXiv (2013)Google Scholar
  28. 28.
    Liu, W.-J., Gao, P.-P., Yu, W.-B., Qu, Z.-G., Yang, C.-N.: Quantum relief algorithm. Quantum Inf. Process. 17(10), 1–15 (2018). Scholar
  29. 29.
    QISKit: Open Source Quantum Information Science Kit. Accessed 12 Apr 2018
  30. 30.
    IBM quantum computing platform. Accessed 11 Apr 2017
  31. 31.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 Anniversary edn. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  32. 32.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman and Company, New York (1972)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Authors and Affiliations

  • Ying Zhang
    • 1
    • 2
  • Yu-xiang Bian
    • 2
    • 3
  • Qiang Fan
    • 2
    • 3
  • Junxiu Chen
    • 4
    Email author
  1. 1.NARI Information and Communication Technology Co., Ltd.NanjingChina
  2. 2.NARI Group Corporation/State Grid Electric Power Research InstituteNanjingChina
  3. 3.NRGD Quantum Technology Co., Ltd.NanjingChina
  4. 4.School of Computer and SoftwareNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations