Macroscopic Theory

  • Jiashi Yang


This chapter presents a concise summary of the basic equations of the phenomenological theory of piezoelectric semiconductors. The Cartesian tensor notation is used, along with the summation convention for repeated tensor indices and the convention that a comma followed by an index denotes partial differentiation with respect to the coordinate associated with the index. A superimposed dot represents a time derivative.


Piezoelectric Semiconductor Macroscopic Phenomenological Quasistatic approximation Gauss’s law Drift-diffusion model Continuity equation Einstein relation Linearization Antiplane problem Thermoelastic Pyroelectric Thermoelectric Piezomagnetic Magnetoelectric 


  1. 1.
    H.F. Tiersten, Linear Piezoelectric Plate Vibrations (Plenum, New York, 1969)CrossRefGoogle Scholar
  2. 2.
    A.H. Meitzler, D. Berlincourt, F.S. Welsh III, H.F. Tiersten, G.A. Coquin, A.W. Warner, IEEE Standard on Piezoelectricity (IEEE, New York, 1988)Google Scholar
  3. 3.
    B.A. Auld, Acoustic Fields and Waves in Solids, vol 1 (Wiley, New York, 1973)Google Scholar
  4. 4.
    J.S. Yang, An Introduction to the Theory of Piezoelectricity, 2nd edn. (Springer, New York, 2018)CrossRefGoogle Scholar
  5. 5.
    R.F. Pierret, Semiconductor Device Fundamentals (Pearson, Uttar Pradesh, 1996)Google Scholar
  6. 6.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  7. 7.
    H.G. de Lorenzi, H.F. Tiersten, On the interaction of the electromagnetic field with heat conducting deformable semiconductors. J. Math. Phys. 16, 938–957 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    G.A. Maugin, N. Daher, Phenomenological theory of elastic semiconductors. Int. J. Eng. Sci. 24, 703–731 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, New York, 1984)CrossRefGoogle Scholar
  10. 10.
    R.D. Mindlin, On the equations of motion of piezoelectric crystals, in Problems of Continuum Mechanics, ed. by J.R.M. Radok, (Society for Industrial and Applied Mathematics, Philadelphia, 1961), pp. 282–290Google Scholar
  11. 11.
    R.D. Mindlin, Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10, 625–637 (1974)CrossRefGoogle Scholar
  12. 12.
    A.C. Eringen, G.A. Maugin, Electrodynamics of Continua, vol I (Springer, New York, 1990)CrossRefGoogle Scholar
  13. 13.
    D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jiashi Yang
    • 1
  1. 1.LincolnUSA

Personalised recommendations