Advertisement

Introduction

  • Jose Martin Herrera Ramirez
  • Raul Perez Bustamante
  • Cesar Augusto Isaza Merino
  • Ana Maria Arizmendi Morquecho
Chapter
  • 17 Downloads

Abstract

The constant innovation of the modern aeronautical and aerospace industries demands the use of better and lighter materials, which represents the most efficient way to reduce the weight of structural components and devices. To achieve this, increasing the resistance-weight ratio implies the use of improved techniques and processing methods for the component manufacturing, which are mainly mass-produced from light alloys and composites, directly impacting the best aircraft performance. This chapter is dedicated to provide a brief description of various types of lightweight materials and composites currently in use, which have been shown to be able of conferring improved properties when they are produced by unconventional processing techniques. For composites materials, the chapter describes some of the most used reinforcement constituents for industrial applications. A brief explanation of various processes for manufacturing lightweight materials and composites, as well as some conventional and sophisticated characterization techniques to evaluate them is afforded.

Keywords

Resistance-weight ratio Light metals Metal-matrix composites Nanoreinforcements Manufacturing processes 

References

  1. 1.
    Peel, C., & Gregson, P. (1995). Design requirements for aerospace structural materials. In H. M. Flower (Ed.), High performance materials in aerospace. Dordrecht: Springer.Google Scholar
  2. 2.
    Ekvall, J., Rhodes, J., & Wald, G. (1982). Methodology for evaluating weight savings from basic material properties. In Design of fatigue and fracture resistant structures. Philadelphia: ASTM International.Google Scholar
  3. 3.
    Polmear, I., et al. (2017). Light alloys: Metallurgy of the light metals. Butterworth-Heinemann.Google Scholar
  4. 4.
    Dumitraschkewitz, P., et al. (2018). Clustering in age-hardenable aluminum alloys. Advanced Engineering Materials, 20(10), 1800255.CrossRefGoogle Scholar
  5. 5.
    Prasad, N. E., Gokhale, A. A., & Wanhill, R. (2017). Aluminium–lithium alloys. In Aerospace materials and material technologies. Springer.Google Scholar
  6. 6.
    Williams, J. C., & Starke, E. A., Jr. (2003). Progress in structural materials for aerospace systems. Acta Materialia, 51(19), 5775–5799.CrossRefGoogle Scholar
  7. 7.
    Faruk, O., Tjong, J., & Sain, M. (2017). Lightweight and sustainable materials for automotive applications. CRC Press.Google Scholar
  8. 8.
    Chawla, K. K. (2003). Ceramic matrix materials. In Ceramic matrix composites. Boston: Springer.CrossRefGoogle Scholar
  9. 9.
    Benjamin, J. S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metallurgical Transactions, 1(10), 2943–2951.Google Scholar
  10. 10.
    Clinktan, R., et al. (2019). Effect of boron carbide nano particles in CuSi4Zn14 silicone bronze nanocomposites on matrix powder surface morphology and structural evolution via mechanical alloying. Ceramics International, 45(3), 3492–3501.CrossRefGoogle Scholar
  11. 11.
    Chen, C.-L., & Lin, C.-H. (2019). In-situ dispersed La oxides of Al6061 composites by mechanical alloying. Journal of Alloys and Compounds, 775, 1156–1163.CrossRefGoogle Scholar
  12. 12.
    Suryanarayana, C. (2011). Synthesis of nanocomposites by mechanical alloying. Journal of Alloys and Compounds, 509, S229–S234.CrossRefGoogle Scholar
  13. 13.
    Suryanarayana, C., Ivanov, E., & Boldyrev, V. (2001). The science and technology of mechanical alloying. Materials Science and Engineering: A, 304, 151–158.CrossRefGoogle Scholar
  14. 14.
    Sundaresan, R., & Froes, F. (1987). Mechanical alloying. JOM, 39(8), 22–27.CrossRefGoogle Scholar
  15. 15.
    Froes, F. (1990). The structural applications of mechanical alloying. JOM Journal of the Minerals, Metals and Materials Society, 42(12), 24–25.CrossRefGoogle Scholar
  16. 16.
    Mehrizi, M. Z., & Beygi, R. (2018). Direct synthesis of Ti3AlC2-Al2O3 nanocomposite by mechanical alloying. Journal of Alloys and Compounds, 740, 118–123.CrossRefGoogle Scholar
  17. 17.
    Luo, X.-T., Yang, G.-J., & Li, C.-J. (2012). Preparation of cBNp/NiCrAl nanostructured composite powders by a step-fashion mechanical alloying process. Powder Technology, 217, 591–598.CrossRefGoogle Scholar
  18. 18.
    Wang, J., et al. (2013). In situ synthesis of Ti2AlC–Al2O3/TiAl composite by vacuum sintering mechanically alloyed TiAl powder coated with CNTs. Journal of Alloys and Compounds, 578, 481–487.CrossRefGoogle Scholar
  19. 19.
    Karak, S., et al. (2018). Development of nano-Y2O3 dispersed Zr alloys synthesized by mechanical alloying and consolidated by pulse plasma sintering. Materials Characterization, 136, 337–345.CrossRefGoogle Scholar
  20. 20.
    Pérez-Bustamante, R., et al. (2017). The effect of heat treatment on microstructure evolution in artificially aged carbon nanotube/Al2024 composites synthesized by mechanical alloying. Materials Characterization, 126, 28–34.CrossRefGoogle Scholar
  21. 21.
    Prosviryakov, A., Samoshina, M., & Popov, V. (2012). Structure and properties of composite materials based on copper strengthened with diamond nanoparticles by mechanical alloying. Metal Science and Heat Treatment, 54(5–6), 298–302.CrossRefGoogle Scholar
  22. 22.
    Prosviryakov, A. (2015). Mechanical alloying of aluminum alloy with nanodiamond particles. Russian Journal of Non-Ferrous Metals, 56(1), 92–96.CrossRefGoogle Scholar
  23. 23.
    Salas, W., Alba-Baena, N., & Murr, L. (2007). Explosive shock-wave consolidation of aluminum powder/carbon nanotube aggregate mixtures: Optical and electron metallography. Metallurgical and Materials Transactions A, 38(12), 2928–2935.CrossRefGoogle Scholar
  24. 24.
    Li, Y.-H., et al. (2007). Cu/single-walled carbon nanotube laminate composites fabricated by cold rolling and annealing. Nanotechnology, 18(20), 205607.CrossRefGoogle Scholar
  25. 25.
    Yang, L., et al. (2016). Deformation mechanisms of ultra-thin Al layers in Al/SiC nanolaminates as a function of thickness and temperature. Philosophical Magazine, 96(32–34), 3336–3355.CrossRefGoogle Scholar
  26. 26.
    Isaza Merino, C. A. (2017). Study of the interface-interphase of a Mg-CNT composite made by an alternative sandwich technique. Medellin: Universidad Nacional de Colombia–Sede Medellin.Google Scholar
  27. 27.
    Azushima, A., et al. (2008). Severe plastic deformation (SPD) processes for metals. CIRP Annals, 57(2), 716–735.CrossRefGoogle Scholar
  28. 28.
    Valiev, R. Z., Zhilyaev, A. P., & Langdon, T. G. (2013). Bulk nanostructured materials: Fundamentals and applications. Wiley.Google Scholar
  29. 29.
    Milewski, J. O. (2017). Additive manufacturing metal, the art of the possible. In Additive manufacturing of metals. Springer: Cham.CrossRefGoogle Scholar
  30. 30.
    Gonzalez, J., et al. (2019). Characterization of Inconel 625 fabricated using powder-bed-based additive manufacturing technologies. Journal of Materials Processing Technology, 264, 200–210.CrossRefGoogle Scholar
  31. 31.
    Kumar, L., & Nair, C. K. (2017). Current trends of additive manufacturing in the aerospace industry. In D. Wimpenny, P. Pandey, & L. J. Kumar (Eds.), Advances in 3D printing & additive manufacturing technologies. Singapore: Springer.Google Scholar
  32. 32.
    Petrovic, V., Vicente Haro Gonzalez, J., Jorda Ferrando, O., Delgado Gordillo, J., Ramon Blasco Puchades, J., & Portoles Grinan, L. (2011). Additive layered manufacturing: Sectors of industrial application shown through case studies. International Journal of Production Research, 49(4), 1061–1079.CrossRefGoogle Scholar
  33. 33.
    Pérez-Sánchez, A., et al. (2018). Fatigue behaviour and equivalent diameter of single Ti-6Al-4V struts fabricated by Electron Beam Melting orientated to porous lattice structures. Materials & Design, 155, 106–115.CrossRefGoogle Scholar
  34. 34.
    Um, J., et al. (2017). STEP-NC compliant process planning of additive manufacturing: Remanufacturing. The International Journal of Advanced Manufacturing Technology, 88(5–8), 1215–1230.CrossRefGoogle Scholar
  35. 35.
    Berndt, C. C., & Lenling, W. J. (2004). Handbook of thermal spray technology, ed. J.R. Davis. USA: ASM international.Google Scholar
  36. 36.
    Vuoristo, P. (2014) Thermal spray coating processes, in Comprehensive materials processing, ed. D. Cameron. Elsevier.Google Scholar
  37. 37.
    Bakshi, S. R., et al. (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surface and Coatings Technology, 203(10–11), 1544–1554.CrossRefGoogle Scholar
  38. 38.
    Yin, S., et al. (2018). Cold-sprayed metal coatings with nanostructure. Advances in Materials Science and Engineering, 2018, 1–19.CrossRefGoogle Scholar
  39. 39.
    Schwartz, M. M. (1997). Composite materials: processing, fabrication, and applications (Vol. 2). Prentice Hall.Google Scholar
  40. 40.
    Desai, A., & Haque, M. (2005). Mechanics of the interface for carbon nanotube–polymer composites. Thin-Walled Structures, 43(11), 1787–1803.CrossRefGoogle Scholar
  41. 41.
    Peter, I., & Rosso, M. (2015). Light alloys-From traditional to innovative technologies. In Z. Ahmad (Ed.), New trends in alloy development, characterization and application. IntechOpen.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jose Martin Herrera Ramirez
    • 1
  • Raul Perez Bustamante
    • 2
  • Cesar Augusto Isaza Merino
    • 3
  • Ana Maria Arizmendi Morquecho
    • 4
  1. 1.Advanced Materials Research CenterChihuahuaMexico
  2. 2.Mexican Corporation for Research on MaterialsCONACYTSan Luis PotosiMexico
  3. 3.Faculty of Engineering, GIIEN Research GroupPascual Bravo University InstitutionMedellinColombia
  4. 4.Advanced Materials Research CenterMonterreyMexico

Personalised recommendations