Brain Computer Interface: A New Pathway to Human Brain

  • Poonam ChaudharyEmail author
  • Rashmi Agrawal
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 17)


The evolution of brain computer interface started with the need of subject’s disability of verbal or written communication or to control immediate environment. Now days this field has been expanded other than neuroprosthetics applications and includes eminent areas of research like education, communication, entertainment, marketing and monitoring. This chapter focus on past 15 years, this assistive technology has attracted potentials numbers of users as well as researchers from multidiscipline.




  1. 1.
    N. Birbaumer, N. Ghanayim, T. Hinterberger, I. Iversen, B. Kotchoubey, A. Kübler, J. Perelmouter, E. Taub, H. Flor, A spelling device for the paralysed. Nature 398(6725), 297 (1999)Google Scholar
  2. 2.
    G. Pfurtscheller, D. Flotzinger, J. Kalcher, Brain-computer interface—a new communication device for handicapped persons. J. Microcomput. Appl. 16(3), 293–299 (1993)Google Scholar
  3. 3.
    N. Birbaumer, T. Hinterberger, A. Kubler, N. Neumann, The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 120–123 (2003)Google Scholar
  4. 4.
    S.G. Mason, G.E. Birch, A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng. 11(1), 70–85 (2003)Google Scholar
  5. 5.
    J.R. Wolpaw, N. Birbaumer, W.J. Heetderks, D.J. McFarland, P.H. Peckham, G. Schalk, E. Donchin, L.A. Quatrano, C.J. Robinson, T.M. Vaughan, Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)Google Scholar
  6. 6.
    B. Blankertz, G. Dornhege, M. Krauledat, K.R. Müller, G. Curio, The non-invasive Berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2), 539–550 (2007)Google Scholar
  7. 7.
    J.R. Wolpaw, N. Birbaumer, D.J. McFarland, G. Pfurtscheller, T.M. Vaughan, Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)Google Scholar
  8. 8.
    A. Kübler, B. Kotchoubey, J. Kaiser, J.R. Wolpaw, N. Birbaumer, Brain–computer communication: unlocking the locked in. Psychol. Bull. 127(3), 358 (2001)Google Scholar
  9. 9.
    J. del R. Millan, J. Mouriño, M. Franzé, F. Cincotti, M. Varsta, J. Heikkonen, F. Babiloni, A local neural classifier for the recognition of EEG patterns associated to mental tasks. IEEE Trans. Neural Netw. 13(3), 678–686 (2002)Google Scholar
  10. 10.
    A. Kostov, M. Polak, Parallel man-machine training in development of EEG-based cursor control. IEEE Trans. Rehabil. Eng. 8(2), 203–205 (2000)Google Scholar
  11. 11.
    S.J. Roberts, W.D. Penny, Real-time brain-computer interfacing: a preliminary study using Bayesian learning. Med. Biol. Eng. Compu. 38(1), 56–61 (2000)Google Scholar
  12. 12.
    C.W. Anderson, Z. Sijercic, Classification of EEG signals from four subjects during five mental tasks, in Solving Engineering Problems with Neural Networks: Proceedings of the Conference on Engineering Applications in Neural Networks (EANN’96), June 1996 (Turkey), pp. 407–414Google Scholar
  13. 13.
    J. Kaiser, J. Perelmouter, I.H. Iversen, N. Neumann, N. Ghanayim, T. Hinterberger, A. Kübler, B. Kotchoubey, N. Birbaumer, Self-initiation of EEG-based communication in paralyzed patients. Clin. Neurophysiol. 112(3), 551–554 (2001)Google Scholar
  14. 14.
    Z. Tang, C. Li, S. Sun, Single-trial EEG classification of motor imagery using deep convolutional neural networks. Optik-Int. J. Light Electron Opt. 130, 11–18 (2017)Google Scholar
  15. 15.
    M. Pavlova, W. Lutzenberger, A. Sokolov, N. Birbaumer, Dissociable cortical processing of recognizable and non-recognizable biological movement: analysing gamma MEG activity. Cereb. Cortex 14(2), 181–188 (2004)Google Scholar
  16. 16.
    H.J. Chizeck, T. Bonaci, Brain-computer interface anonymizer. U.S. Patent Application 14/174,818, University of Washington, 2014Google Scholar
  17. 17.
    B. Blankertz, C. Sannelli, S. Halder, E.M. Hammer, A. Kübler, K.R. Müller, G. Curio, T. Dickhaus, Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4), 1303–1309 (2010)Google Scholar
  18. 18.
    Á. Barbero, M. Grosse-Wentrup, Biased feedback in brain-computer interfaces. J. Neuroeng. Rehabil. 7(1), 34 (2010)Google Scholar
  19. 19.
    M. Tangermann, K.R. Müller, A. Aertsen, N. Birbaumer, C. Braun, C. Brunner, R. Leeb, C. Mehring, K.J. Miller, G. Mueller-Putz, G. Nolte, Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)Google Scholar
  20. 20.
    R. Oostenveld, P. Praamstra, The five percent electrode system for high-resolution EEG and ERP measurements. Clin. Neurophysiol. 112(4), 713–719 (2001)Google Scholar
  21. 21.
    B. Allison, Brain Computer Interface Systems (1999).
  22. 22.
    E. Niedermeyer, The normal EEG of the waking adult, in Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, vol. 167, pp. 155–164 (2005)Google Scholar
  23. 23.
    P.A. Abhang, B.W. Gawali, S.C. Mehrotra, Introduction to EEG- and Speech-Based Emotion Recognition (Academic Press, 2016)Google Scholar
  24. 24.
    G. Pfurtscheller, A. Berghold, Patterns of cortical activation during planning of voluntary movement. Electroencephalogr. Clin. Neurophysiol. 72(3), 250–258 (1989)Google Scholar
  25. 25.
    S. Rosca, M. Leba, A. Ionica, O. Gamulescu, Quadcopter control using a BCI. IOP Conf. Ser. Mater. Sci. Eng. 294(1), 012048 (2018)Google Scholar
  26. 26.
    H. Liu, J. Wang, C. Zheng, P. He, Study on the effect of different frequency bands of EEG signals on mental tasks classification, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Jan 2006 (IEEE), pp. 5369–5372Google Scholar
  27. 27.
    J.A. Pineda, The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res. Rev. 50(1), 57–68 (2005)Google Scholar
  28. 28.
    J.R. Wolpaw, D.J. McFarland, Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. 101(51), 17849–17854 (2004)Google Scholar
  29. 29.
    J.Y. Bennington, J. Polich, Comparison of P300 from passive and active tasks for auditory and visual stimuli. Int. J. Psychophysiol. 34(2), 171–177 (1999)Google Scholar
  30. 30.
    S. Lemm, K.R. Müller, G. Curio, A generalized framework for quantifying the dynamics of EEG event-related desynchronization. PLoS Comput. Biol. 5(8), e1000453 (2009)MathSciNetGoogle Scholar
  31. 31.
    J.A. Wilson, E.A. Felton, P.C. Garell, G. Schalk, J.C. Williams, ECoG factors underlying multimodal control of a brain-computer interface. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2), 246–250 (2006)Google Scholar
  32. 32.
    T.G. Yuen, W.F. Agnew, L.A. Bullara, Tissue response to potential neuroprosthetic materials implanted subdurally. Biomaterials 8(2), 138–141 (1987)Google Scholar
  33. 33.
    U.R. Acharya, F. Molinari, S.V. Sree, S. Chattopadhyay, K.H. Ng, J.S. Suri, Automated diagnosis of epileptic EEG using entropies. Biomed. Signal Process. Control 7(4), 401–408 (2012)Google Scholar
  34. 34.
    T.A. Szuts, V. Fadeyev, S. Kachiguine, A. Sher, M.V. Grivich, M. Agrochão, P. Hottowy, W. Dabrowski, E.V. Lubenov, A.G. Siapas, N. Uchida, A wireless multi-channel neural amplifier for freely moving animals. Nat. Neurosci. 14(2), 263 (2011)Google Scholar
  35. 35.
    M. Berger, A. Gail, The Reach Cage environment for wireless neural recordings during structured goal-directed behavior of unrestrained monkeys. bioRxiv 305334 (2018)Google Scholar
  36. 36.
    V. Cutsuridis, Memory prosthesis: is it time for a deep neuromimetic computing approach? Front. Neurosci. 13 (2019)Google Scholar
  37. 37.
    M. Fatourechi, A. Bashashati, R.K. Ward, G.E. Birch, EMG and EOG artifacts in brain computer interface systems: a survey. Clin. Neurophysiol. 118(3), 480–494 (2007)Google Scholar
  38. 38.
    Á. Costa, R. Salazar-Varas, A. Úbeda, J.M. Azorín, Characterization of artifacts produced by gel displacement on non-invasive brain-machine interfaces during ambulation. Front. Neurosci. 10, 60 (2016)Google Scholar
  39. 39.
    H. Wang, Y. Li, J. Long, T. Yu, Z. Gu, An asynchronous wheelchair control by hybrid EEG–EOG brain–computer interface. Cogn. Neurodyn. 8(5), 399–409 (2014)Google Scholar
  40. 40.
    J. Jiang, Z. Zhou, E. Yin, Y. Yu, D. Hu, Hybrid brain-computer interface (BCI) based on the EEG and EOG signals. Bio-Med. Mater. Eng. 24(6), 2919–2925 (2014)Google Scholar
  41. 41.
    S.R. Soekadar, M. Witkowski, N. Vitiello, N. Birbaumer, An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Biomed. Eng./Biomed. Tech. 60(3), 199–205 (2015)Google Scholar
  42. 42.
    S.R. Soekadar, M. Witkowski, C. Gómez, E. Opisso, J. Medina, M. Cortese, M. Cempini, M.C. Carrozza, L.G. Cohen, N. Birbaumer, N. Vitiello, Hybrid EEG/EOG-based brain/neural hand exoskeleton restores fully independent daily living activities after quadriplegia. Sci. Robot. 1(1), eaag3296–1 (2016)Google Scholar
  43. 43.
    W.L. Zheng, B.L. Lu, A multimodal approach to estimating vigilance using EEG and forehead EOG. J. Neural Eng. 14(2), 026017 (2017)Google Scholar
  44. 44.
    M.H. Lee, J. Williamson, D.O. Won, S. Fazli, S.W. Lee, A high performance spelling system based on EEG-EOG signals with visual feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1443–1459 (2018)Google Scholar
  45. 45.
    B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, K.R. Muller, Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25(1), 41–56 (2007)Google Scholar
  46. 46.
    J. Shin, K.R. Müller, C.H. Schmitz, D.W. Kim, H.J. Hwang, Evaluation of a compact hybrid brain-computer interface system. BioMed Res. Int. (2017)Google Scholar
  47. 47.
    B.J. Culpepper, R.M. Keller, Enabling computer decisions based on EEG input. IEEE Trans. Neural Syst. Rehabil. Eng. 11(4), 354–360 (2003)Google Scholar
  48. 48.
    B. Koo, H.G. Lee, Y. Nam, H. Kang, C.S. Koh, H.C. Shin, S. Choi, A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery. J. Neurosci. Methods 244, 26–32 (2015)Google Scholar
  49. 49.
    M.J. Khan, M.J. Hong, K.S. Hong, Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 8, 244 (2014)Google Scholar
  50. 50.
    A. Bashashati, M. Fatourechi, R.K. Ward, G.E. Birch, A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. J. Neural Eng. 4(2), R32 (2007)Google Scholar
  51. 51.
    K.P. Thomas, C. Guan, C.T. Lau, A.P. Vinod, K.K. Ang, A new discriminative common spatial pattern method for motor imagery brain–computer interfaces. IEEE Trans. Biomed. Eng. 56(11), 2730–2733 (2009)Google Scholar
  52. 52.
    W. Wu, Z. Chen, X. Gao, Y. Li, E.N. Brown, S. Gao, Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 639–653 (2014)Google Scholar
  53. 53.
    S.H. Park, D. Lee, S.G. Lee, Filter bank regularized common spatial pattern ensemble for small sample motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 26(2), 498–505 (2017)Google Scholar
  54. 54.
    G. Townsend, B. Graimann, G. Pfurtscheller, A comparison of common spatial patterns with complex band power features in a four-class BCI experiment. IEEE Trans. Biomed. Eng. 53(4), 642–651 (2006)Google Scholar
  55. 55.
    M.P. Norton, D.G. Karczub, Fundamentals of Noise and Vibration Analysis for Engineers (Cambridge University Press, 2003)Google Scholar
  56. 56.
    A. Subasi, E. Erçelebi, A. Alkan, E. Koklukaya, Comparison of subspace-based methods with AR parametric methods in epileptic seizure detection. Comput. Biol. Med. 36(2), 195–208 (2006)Google Scholar
  57. 57.
    A. Schlögl, G. Pfurtscheller, Considerations on adaptive autoregressive modelling in EEG analysis, in Proceedings of First International Symposium on Communication Systems and Digital Signal Processing (1998)Google Scholar
  58. 58.
    Y. Zhang, S. Zhang, X. Ji, EEG-based classification of emotions using empirical mode decomposition and autoregressive model. Multimed. Tools Appl. 77(20), 26697–26710 (2018)Google Scholar
  59. 59.
    J.Y. Chang, M. Fecchio, A. Pigorini, M. Massimini, G. Tononi, B.D. Van Veen, Assessing recurrent interactions in cortical networks: modeling EEG response to transcranial magnetic stimulation. J. Neurosci. Methods 312, 93–104 (2019)Google Scholar
  60. 60.
    D.W. Chen, R. Miao, W.Q. Yang, Y. Liang, H.H. Chen, L. Huang, C.J. Deng, N. Han, A feature extraction method based on differential entropy and linear discriminant analysis for emotion recognition. Sensors 19(7), 1631 (2019)Google Scholar
  61. 61.
    R. Martín-Clemente, J. Olias, D. Thiyam, A. Cichocki, S. Cruces, Information theoretic approaches for motor-imagery BCI systems: review and experimental comparison. Entropy 20(1), 7 (2018)Google Scholar
  62. 62.
    R. Elmahdi, N.Y. Amed, M.B.M. Amin, A.O. Hamza, S.A. Babaker, W.A.A. Elgylani, Comparative study between daubechies and coiflets wavelet decomposition mother families in feature extraction of BCI based on multiclass motor imagery discrimination. J. Clin. Eng. 44(1), 41–46 (2019)Google Scholar
  63. 63.
    J. Zhou, M. Meng, Y. Gao, Y. Ma, Q. Zhang, Classification of motor imagery EEG using wavelet envelope analysis and LSTM networks, in 2018 Chinese Control and Decision Conference (CCDC), June 2018 (IEEE), pp. 5600–5605Google Scholar
  64. 64.
    Y. Wang, X. Li, H. Li, C. Shao, L. Ying, S. Wu, Feature extraction of motor imagery electroencephalography based on time-frequency-space domains. J. Biomed. Eng. 31(5), 955–961 (2014)Google Scholar
  65. 65.
    M. Dyson, T. Balli, J.Q. Gan, F. Sepulveda, R. Palaniappan. 2008. Approximate entropy for EEG-based movement detection, pp. 110–115Google Scholar
  66. 66.
    S.M. Zhou, J.Q. Gan, F. Sepulveda, Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface. Inf. Sci. 178(6), 1629–1640 (2008)Google Scholar
  67. 67.
    K.R. Müller, M. Krauledat, G. Dornhege, G. Curio, B. Blankertz, Machine learning techniques for brain-computer interfaces. Biomed. Tech. 49(1), 11–22 (2004)Google Scholar
  68. 68.
    G.H. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in Machine Learning Proceedings 1994 (Morgan Kaufmann, 1994), pp. 121–129Google Scholar
  69. 69.
    H. Liu, L. Yu, Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 4, 491–502 (2005)Google Scholar
  70. 70.
    L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a comparative. J. Mach. Learn. Res. 10(66–71), 13 (2009)Google Scholar
  71. 71.
    P. Chaudhary, R. Agrawal, A comparative study of linear and non-linear classifiers in sensory motor imagery based brain computer interface. J. Comput. Theor. Nanosci. 16(12), 5134–5139 (2019)Google Scholar
  72. 72.
    A. Schlögl, C. Vidaurre, K.R. Müller, Adaptive methods in BCI research—an introductory tutorial, in Brain-Computer Interfaces (Springer, Berlin, Heidelberg, 2009), pp. 331–355Google Scholar
  73. 73.
    P. Sykacek, S.J. Roberts, M. Stokes, Adaptive BCI based on variational Bayesian Kalman filtering: an empirical evaluation. IEEE Trans. Biomed. Eng. 51(5), 719–727 (2004)Google Scholar
  74. 74.
    P. Shenoy, M. Krauledat, B. Blankertz, R.P. Rao, K.R. Müller, Towards adaptive classification for BCI. J. Neural Eng. 3(1), R13 (2006)Google Scholar
  75. 75.
    M. Fernández-Delgado, E. Cernadas, S. Barro, D. Amorim, Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)MathSciNetzbMATHGoogle Scholar
  76. 76.
    S. Marcel, J.D.R. Millán, Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 743–752 (2007)Google Scholar
  77. 77.
    J.W. Yoon, S.J. Roberts, M. Dyson, J.Q. Gan, Adaptive classification for brain computer interface systems using sequential Monte Carlo sampling. Neural Netw. 22(9), 1286–1294 (2009)Google Scholar
  78. 78.
    Q. Zheng, F. Zhu, J. Qin, P.A. Heng, Multiclass support matrix machine for single trial EEG classification. Neurocomputing 275, 869–880 (2018)Google Scholar
  79. 79.
    A. Subasi, J. Kevric, M.A. Canbaz, Epileptic seizure detection using hybrid machine learning methods. Neural Comput. Appl. 31(1), 317–325 (2019)Google Scholar
  80. 80.
    M.K. Hazrati, A. Erfanian, An online EEG-based brain–computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med. Eng. Phys. 32(7), 730–739 (2010)Google Scholar
  81. 81.
    T. Kawase, T. Sakurada, Y. Koike, K. Kansaku, A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements. J. Neural Eng. 14(1), 016015 (2017)Google Scholar
  82. 82.
    X. Zhang, B. Hu, X. Ma, L. Xu, Resting-state whole-brain functional connectivity networks for MCI classification using L2-regularized logistic regression. IEEE Trans. Nanobiosci. 14(2), 237–247 (2015)Google Scholar
  83. 83.
    J. Li, L. Zhang, Bilateral adaptation and neurofeedback for brain computer interface system. J. Neurosci. Methods 193(2), 373–379 (2010)MathSciNetGoogle Scholar
  84. 84.
    B.A.S. Hasan, J.Q. Gan, Hangman BCI: an unsupervised adaptive self-paced brain-computer interface for playing games. Comput. Biol. Med. 42(5), 598–606 (2012)Google Scholar
  85. 85.
    G. Liu, D. Zhang, J. Meng, G. Huang, X. Zhu, Unsupervised adaptation of electroencephalogram signal processing based on fuzzy C-means algorithm. Int. J. Adapt. Control Signal Process. 26(6), 482–495 (2012)MathSciNetzbMATHGoogle Scholar
  86. 86.
    A. Llera, M.A. van Gerven, V. Gómez, O. Jensen, H.J. Kappen, On the use of interaction error potentials for adaptive brain computer interfaces. Neural Netw. 24(10), 1120–1127 (2011)Google Scholar
  87. 87.
    X. Artusi, I.K. Niazi, M.F. Lucas, D. Farina, Performance of a simulated adaptive BCI based on experimental classification of movement-related and error potentials. IEEE J. Emerg. Sel. Topics Circ. Syst. 1(4), 480–488 (2011)Google Scholar
  88. 88.
    S. Lu, C. Guan, H. Zhang, Unsupervised brain computer interface based on inter-subject information, in 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug 2008 (IEEE), pp. 638–641Google Scholar
  89. 89.
    T. Verhoeven, D. Hübner, M. Tangermann, K.R. Müller, J. Dambre, P.J. Kindermans, Improving zero-training brain-computer interfaces by mixing model estimators. J. Neural Eng. 14(3), 036021 (2017)Google Scholar
  90. 90.
    R. Tomioka, K.R. Müller, A regularized discriminative framework for EEG analysis with application to brain–computer interface. NeuroImage 49(1), 415–432 (2010)Google Scholar
  91. 91.
    F. Yger, M. Berar, F. Lotte, Riemannian approaches in brain-computer interfaces: a review. IEEE Trans. Neural Syst. Rehabil. Eng. 25(10), 1753–1762 (2016)Google Scholar
  92. 92.
    A.H. Phan, A. Cichocki, Tensor decompositions for feature extraction and classification of high dimensional datasets. Nonlinear Theory Appl IEICE 1(1), 37–68 (2010)Google Scholar
  93. 93.
    Y. Washizawa, H. Higashi, T. Rutkowski, T. Tanaka, A. Cichocki, Tensor based simultaneous feature extraction and sample weighting for EEG classification, in International Conference on Neural Information Processing, Nov 2010 (Springer, Berlin, Heidelberg, 2010), pp. 26–33Google Scholar
  94. 94.
    S. Ben-David, T. Lu, T. Luu, D. Pál, Impossibility theorems for domain adaptation, in International Conference on Artificial Intelligence and Statistics (2010), pp. 129–136Google Scholar
  95. 95.
    S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Discov. Data Eng 22(10) (2010)Google Scholar
  96. 96.
    S. Ding, N. Zhang, X. Xu, L. Guo, J. Zhang, Deep extreme learning machine and its application in EEG classification. Math. Probl. Eng. (2015)Google Scholar
  97. 97.
    T. Ma, H. Li, H. Yang, X. Lv, P. Li, T. Liu, D. Yao, P. Xu, The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing. J. Neurosci. Methods 275, 80–92 (2017)Google Scholar
  98. 98.
    Z. Yin, J. Zhang, Cross-session classification of mental workload levels using EEG and an adaptive deep learning model. Biomed. Signal Process. Control 33, 30–47 (2017)Google Scholar
  99. 99.
    J. Kronegg, S. Voloshynovskyy, T. Pun, Analysis of bit-rate definitions for brain-computer interfaces (2005)Google Scholar
  100. 100.
    P. Chaudhary, R. Agrawal, Emerging threats to security and privacy in brain computer interface. Int. J. Adv. Stud. Sci. Res. 3(12) (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The NorthCap UniversityGurugramIndia
  2. 2.Manav Rachna International Institute of Research and StudiesFaridabadIndia

Personalised recommendations