Fluorescent Probes for Applications in Bioimaging

  • Miriam Di Martino
  • Francesco Marrafino
  • Rosita Diana
  • Pio Iannelli
  • Simona ConcilioEmail author
Conference paper
Part of the Lecture Notes in Bioengineering book series (LNBE)


Optical bioimaging has played a central role in fundamental research and clinical practice. The signals emitted by biological tissues can provide molecular information about various physiological and pathophysiological processes. NIR light (650–1700 nm) can penetrate the blood and biological tissues more profoundly and effectively because, at longer wavelengths, less light is diffused and absorbed. Therefore, many probes have been developed for bioimaging in the NIR window for real-time, high-sensitivity deep tissue imaging. The library of optical probes has been expanded in recent years to include a wide range of probes with emission in the Red-NIR window. The emergence of these new contrast media has provided an essential alternative for realizing the full potential of bioimaging. The most recent advances in small molecule potential probes for detection and imaging in biological systems are examined below.


Fluorescence probes NIR Optical bioimaging Small-molecule 


  1. 1.
    Friedman, R., et al.: Understanding conformational dynamics of complex lipid mixtures relevant to biology. J. Membr. Biol. 251(5–6), 609–631 (2018)CrossRefGoogle Scholar
  2. 2.
    Chan, J., Dodani, S.C., Chang, C.J.: Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat. Chem. 4(12), 973 (2012)CrossRefGoogle Scholar
  3. 3.
    Terai, T., Nagano, T.: Fluorescent probes for bioimaging applications. Curr. Opin. Chem. Biol. 12(5), 515–521 (2008)CrossRefGoogle Scholar
  4. 4.
    Yang, Z., et al.: Highly selective red-and green-emitting two-photon fluorescent probes for cysteine detection and their bio-imaging in living cells. Chem. Commun. 48(28), 3442–3444 (2012)CrossRefGoogle Scholar
  5. 5.
    Terai, T., Nagano, T.: Small-molecule fluorophores and fluorescent probes for bioimaging. Pflügers Archiv-Eur. J. Physiol. 465(3), 347–359 (2013)CrossRefGoogle Scholar
  6. 6.
    Kiyose, K., Kojima, H., Nagano, T.: Functional near-infrared fluorescent probes. Chem.–Asian J. 3(3), 506–515 (2008)CrossRefGoogle Scholar
  7. 7.
    Miyawaki, A., Niino, Y.: Molecular spies for bioimaging—fluorescent protein-based probes. Mol. Cell 58(4), 632–643 (2015)CrossRefGoogle Scholar
  8. 8.
    Saito, K., Nagai, T.: Recent progress in luminescent proteins development. Curr. Opin. Chem. Biol. 27, 46–51 (2015)CrossRefGoogle Scholar
  9. 9.
    Panunzi, B., et al.: Photophysical properties of luminescent zinc(II)-pyridinyloxadiazole complexes and their glassy self-assembly networks. Eur. J. Inorg. Chem. 2018(23), 2709–2716 (2018)CrossRefGoogle Scholar
  10. 10.
    Leblond, F., et al.: Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J. Photochem. Photobiol. B: Biol. 98(1), 77–94 (2010)CrossRefGoogle Scholar
  11. 11.
    Guo, Z., et al.: Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 43(1), 16–29 (2014)CrossRefGoogle Scholar
  12. 12.
    Concilio, S., et al.: Zn-complex based on oxadiazole/carbazole structure: Synthesis, optical and electric properties. Thin Solid Films 556, 419–424 (2014)CrossRefGoogle Scholar
  13. 13.
    Escobedo, J.O., et al.: NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 14(1), 64–70 (2010)CrossRefGoogle Scholar
  14. 14.
    Li, J.-B., Liu, H.-W., Fu, T., Wang, R., Zhang, X.-B., Tan, W.: Recent progress in small-molecule near-IR probes for bioimaging. Trends Chem. 1(2), 224–234 (2019)CrossRefGoogle Scholar
  15. 15.
    Nagano, T.: Development of fluorescent probes for bioimaging applications. Proc. Jpn. Acad. Ser. B 86(8), 837–847 (2010)CrossRefGoogle Scholar
  16. 16.
    Yuan, L., et al.: FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc. Chem. Res. 46(7), 1462–1473 (2013)CrossRefGoogle Scholar
  17. 17.
    Antaris, A.L., et al.: A small-molecule dye for NIR-II imaging. Nat. Mater. 15(2), 235 (2016)CrossRefGoogle Scholar
  18. 18.
    Concilio, S., et al.: A novel fluorescent solvatochromic probe for lipid bilayers. Supramol. Chem. 29(11), 887–895 (2017)CrossRefGoogle Scholar
  19. 19.
    Diana, R., et al.: A real-time tripodal colorimetric/fluorescence sensor for multiple target metal ions. Dyes Pigm. 155, 249–257 (2018)CrossRefGoogle Scholar
  20. 20.
    Diana, R., Panunzi, B., Tuzi, A., Piotto, S., Concilio, S., Caruso, U.: An amphiphilic pyridinoyl-hydrazone probe for colorimetric and fluorescence pH sensing. Molecules 24(21), 3833–3855 (2019)CrossRefGoogle Scholar
  21. 21.
    Panunzi, B., et al.: Fluorescence pH-dependent sensing of Zn(II)by a tripodal ligand. A comparative X-ray and DFT study. J. Lumin. 212, 200–206 (2019)CrossRefGoogle Scholar
  22. 22.
    Oelkrug, D., et al.: Tuning of fluorescence in films and nanoparticles of oligophenylenevinylenes. J. Phys. Chem. B 102(11), 1902–1907 (1998)CrossRefGoogle Scholar
  23. 23.
    Luo, J., et al.: Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 18, 1740–1741 (2001)CrossRefGoogle Scholar
  24. 24.
    Yuan, L., et al.: Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev. 42(2), 622–661 (2013)CrossRefGoogle Scholar
  25. 25.
    Kaur, M., Choi, D.H.: Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 44(1), 58–77 (2015)CrossRefGoogle Scholar
  26. 26.
    Yin, J., et al.: Cyanine-based fluorescent probe for highly selective detection of glutathione in cell cultures and live mouse tissues. J. Am. Chem. Soc. 136(14), 5351–5358 (2014)CrossRefGoogle Scholar
  27. 27.
    Oushiki, D., et al.: Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes. J. Am. Chem. Soc. 132(8), 2795–2801 (2010)CrossRefGoogle Scholar
  28. 28.
    Hirayama, T., et al.: Near-infrared fluorescent sensor for in vivo copper imaging in a murine Wilson disease model. Proc. Natl. Acad. Sci. 109(7), 2228–2233 (2012)CrossRefGoogle Scholar
  29. 29.
    Guo, Z., et al.: A cyanine-based fluorescent sensor for detecting endogenous zinc ions in live cells and organisms. Biomaterials 33(31), 7818–7827 (2012)CrossRefGoogle Scholar
  30. 30.
    Tang, B., et al.: A sensitive and selective near-infrared fluorescent probe for mercuric ions and its biological imaging applications. ChemBioChem 9(7), 1159–1164 (2008)CrossRefGoogle Scholar
  31. 31.
    Li, P., et al.: A near-infrared fluorescent probe for detecting copper (II) with high selectivity and sensitivity and its biological imaging applications. Chem. Commun. 47(27), 7755–7757 (2011)CrossRefGoogle Scholar
  32. 32.
    Yang, Y., et al.: Highly selective and sensitive near-infrared fluorescent sensors for cadmium in aqueous solution. Org. Lett. 13(2), 264–267 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zheng, H., et al.: A heptamethine cyanine-based colorimetric and ratiometric fluorescent chemosensor for the selective detection of Ag+ in an aqueous medium. Chem. Commun. 48(16), 2243–2245 (2012)CrossRefGoogle Scholar
  34. 34.
    Li, Y., et al.: Hemicyanine-based high resolution ratiometric near-infrared fluorescent probe for monitoring pH changes in vivo. Anal. Chem. 87(4), 2495–2503 (2015)CrossRefGoogle Scholar
  35. 35.
    He, L., et al.: A unique type of pyrrole-based cyanine fluorophores with turn-on and ratiometric fluorescence signals at different pH regions for sensing pH in enzymes and living cells. ACS Appl. Mater. Interfaces 6(24), 22326–22333 (2014)CrossRefGoogle Scholar
  36. 36.
    Fang, M., et al.: A cyanine-based fluorescent cassette with aggregation-induced emission for sensitive detection of pH changes in live cells. Chem. Commun. 54(9), 1133–1136 (2018)CrossRefGoogle Scholar
  37. 37.
    Han, J., Burgess, K.: Fluorescent indicators for intracellular pH. Chem. Rev. 110(5), 2709–2728 (2009)CrossRefGoogle Scholar
  38. 38.
    Hilderbrand, S.A., Weissleder, R.: Optimized pH-responsive cyanine fluorochromes for detection of acidic environments. Chem. Commun. 26, 2747–2749 (2007)CrossRefGoogle Scholar
  39. 39.
    Myochin, T., et al.: Rational design of ratiometric near-infrared fluorescent pH probes with various pKa values, based on aminocyanine. J. Am. Chem. Soc. 133(10), 3401–3409 (2011)CrossRefGoogle Scholar
  40. 40.
    Sethna, S.M., Shah, N.M.: The chemistry of coumarins. Chem. Rev. 36(1), 1–62 (1945)CrossRefGoogle Scholar
  41. 41.
    Thakur, A., Singla, R., Jaitak, V.: Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 101, 476–495 (2015)CrossRefGoogle Scholar
  42. 42.
    Jung, Y., et al.: Benzo[g]coumarin-based fluorescent probes for bioimaging applications. J. Anal. Methods Chem. 2018, 11 (2018)CrossRefGoogle Scholar
  43. 43.
    Kang, D.E., et al.: Two-photon probe for Cu2+ with an internal reference: quantitative estimation of Cu2+ in human tissues by two-photon microscopy. Anal. Chem. 86(11), 5353–5359 (2014)CrossRefGoogle Scholar
  44. 44.
    Sarkar, A.R., et al.: Red emissive two-photon probe for real-time imaging of mitochondria trafficking. Anal. Chem. 86(12), 5638–5641 (2014)CrossRefGoogle Scholar
  45. 45.
    Sarkar, A.R., et al.: A ratiometric two-photon probe for quantitative imaging of mitochondrial pH values. Chem. Sci. 7(1), 766–773 (2016)CrossRefGoogle Scholar
  46. 46.
    Ni, Y., Wu, J.: Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 12(23), 3774–3791 (2014)CrossRefGoogle Scholar
  47. 47.
    Matsui, A., et al.: A near-infrared fluorescent calcium probe: a new tool for intracellular multicolour Ca2+ imaging. Chem. Commun. 47(37), 10407–10409 (2011)CrossRefGoogle Scholar
  48. 48.
    Cao, J., et al.: Target-triggered deprotonation of 6-hydroxyindole-based BODIPY: specially switch on NIR fluorescence upon selectively binding to Zn2+. Chem. Commun. 48(79), 9897–9899 (2012)CrossRefGoogle Scholar
  49. 49.
    Coskun, A., Yilmaz, M.D., Akkaya, E.U.: Bis (2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg (II). Org. Lett. 9(4), 607–609 (2007)CrossRefGoogle Scholar
  50. 50.
    McDonnell, S.O., O’Shea, D.F.: Near-infrared sensing properties of dimethlyamino-substituted BF2−azadipyrromethenes. Org. Lett. 8(16), 3493–3496 (2006)CrossRefGoogle Scholar
  51. 51.
    Madhu, S., Gonnade, R., Ravikanth, M.: Synthesis of 3, 5-bis (acrylaldehyde) boron-dipyrromethene and application in detection of cysteine and homocysteine in living cells. J. Org. Chem. 78(10), 5056–5060 (2013)CrossRefGoogle Scholar
  52. 52.
    Zhao, J., Zhong, D., Zhou, S.: NIR-I-to-NIR-II fluorescent nanomaterials for biomedical imaging and cancer therapy. J. Mater. Chem. B 6(3), 349–365 (2018)CrossRefGoogle Scholar
  53. 53.
    Zhang, X., et al.: Near-infrared molecular probes for in vivo imaging. Curr. Protoc. Cytometry 60(1), 12.27.1–12.27.20 (2012)Google Scholar
  54. 54.
    Zhu, S., et al.: Near-infrared-II (NIR-II) bioimaging via off-peak NIR-I fluorescence emission. Theranostics 8(15), 4141 (2018)CrossRefGoogle Scholar
  55. 55.
    Cui, M., et al.: Smart near-infrared fluorescence probes with donor–acceptor structure for in vivo detection of β-amyloid deposits. J. Am. Chem. Soc. 136(9), 3388–3394 (2014)CrossRefGoogle Scholar
  56. 56.
    Li, Y., et al.: Novel D–A–D based near-infrared probes for the detection of β-amyloid and Tau fibrils in Alzheimer’s disease. Chem. Commun. 54(63), 8717–8720 (2018)CrossRefGoogle Scholar
  57. 57.
    Kim, M., et al.: A distyrylbenzene based highly efficient deep red/near-infrared emitting organic solid. J. Mater. Chem. C 3(2), 231–234 (2015)CrossRefGoogle Scholar
  58. 58.
    Borbone, F., et al.: On–off mechano-responsive switching of ESIPT luminescence in polymorphic N-salicylidene-4-amino-2-methylbenzotriazole. Cryst. Growth Des. 17(10), 5517–5523 (2017)CrossRefGoogle Scholar
  59. 59.
    Shi, J., et al.: Solid state luminescence enhancement in π-conjugated materials: unraveling the mechanism beyond the framework of AIE/AIEE. J. Phys. Chem. C 121(41), 23166–23183 (2017)CrossRefGoogle Scholar
  60. 60.
    Panunzi, B., et al.: Solid-state highly efficient DR mono and poly-dicyano-phenylenevinylene fluorophores. Molecules 23(7), 1505 (2018)CrossRefGoogle Scholar
  61. 61.
    Caruso, U., et al.: AIE/ACQ effects in two DR/NIR emitters: a structural and DFT comparative analysis. Molecules 23(8), 1947 (2018)CrossRefGoogle Scholar
  62. 62.
    Diana, R., et al.: Highly efficient dicyano-phenylenevinylene fluorophore as polymer dopant or zinc-driven self-assembling building block. Inorg. Chem. Commun. 104, 145–149 (2019)CrossRefGoogle Scholar
  63. 63.
    Diana, R., et al.: The effect of bulky substituents on two π-conjugated mesogenic fluorophores. Their organic polymers and zinc-bridged luminescent networks. Polymers 11(9), 1379 (2019)CrossRefGoogle Scholar
  64. 64.
    Lu, H., et al.: Highly efficient far red/near-infrared solid fluorophores: aggregation-induced emission, intramolecular charge transfer, twisted molecular conformation, and bioimaging applications. Angew. Chem. Int. Ed. 55(1), 155–159 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Miriam Di Martino
    • 1
  • Francesco Marrafino
    • 1
  • Rosita Diana
    • 2
  • Pio Iannelli
    • 1
  • Simona Concilio
    • 3
    Email author
  1. 1.Department of PharmacyUniversity of SalernoFiscianoItaly
  2. 2.Department of AgricultureUniversity of Napoli Federico IIPorticiItaly
  3. 3.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations