Advertisement

Following the Growth and Division of Lipid Boundaries by Using Glass Microsphere-Supported Protocells

  • Augustin Lopez
  • Carolina Chieffo
  • Michele FioreEmail author
Conference paper
  • 42 Downloads
Part of the Lecture Notes in Bioengineering book series (LNBE)

Abstract

Protocells are compartmented molecular networks which can be designed to study the origins of life. Glass microsphere-supported giant vesicles (MSGVs) are model protocells for which monodispersed glass beads are coated with a lipid bilayer thanks to avidin and biotinylated phospholipids. These supramolecular assemblies have proved to be extremely effective to understand certain phenomena related to the self-reproduction of protocells thanks to a series of intriguing experiments. First, the growth and division (G&D) of these giant vesicles was observed by epifluorescence and confocal microscopy when they were fed with fatty acids solutions at different feeding rates. Second, chemical analyses performed by a combination of GC-MS, UPLC-HRMS and phospholipid-specific assay, allowed to independently study the composition of the vesicles obtained after G&D.

Keywords

Phospholipids Fatty acids Membranes Vesicles Protocells Self-reproduction Autopoietic systems 

Notes

Acknowledgements

MF thanks Prof. Stefano Piotto and Prof. Federico Rossi that gave him the opportunity to present preliminary results on this topic at the 3rd International Conference on Bio and Nanomaterials (BIONAM) – September 29–October 3, 2019.

Conflict of Interest

The authors declare no conflict of interest.

References

  1. Albertsen, A.N., Duffy, C.D., Sutherland, J.D., Monnard, P.-A.: Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants. Astrobiology 14, 462–472 (2014a).  https://doi.org/10.1089/ast.2013.1111CrossRefGoogle Scholar
  2. Albertsen, A.N., Maurer, S.E., Nielsen, K.A., Monnard, P.-A.: Transmission of photo-catalytic function in a self-replicating chemical system: in situ amphiphile production over two protocell generations. Chem. Commun. 50, 8989–8992 (2014b).  https://doi.org/10.1039/C4CC01543FCrossRefGoogle Scholar
  3. Berclaz, N., Müller, M., Walde, P., Luisi, P.L.: Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J. Phys. Chem. B 105, 1056–1064 (2001).  https://doi.org/10.1021/jp001298iCrossRefGoogle Scholar
  4. Božič, B., Svetina, S.: A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction. Eur. Biophys. J. 33, 565–571 (2004).  https://doi.org/10.1007/s00249-004-0404-5CrossRefGoogle Scholar
  5. Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A.W., Schultz, P.: Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1985).  https://doi.org/10.1017/S0033583500004297CrossRefGoogle Scholar
  6. Fayolle, D., Altamura, E., D’Onofrio, A., Madanamothoo, W., Fenet, B., Mavelli, F., Buchet, R., Stano, P., Fiore, M., Strazewski, P.: Crude phosphorylation mixtures containing racemic lipid amphiphiles self-assemble to give stable primitive compartments. Sci. Rep. 7, 18106–18114 (2017).  https://doi.org/10.1038/s41598-017-18053-yCrossRefGoogle Scholar
  7. Fiore, M.: The synthesis of mono-alkyl phosphates and their derivatives: an overview of their nature, preparation and use, including synthesis under plausible prebiotic conditions. Org. Biomol. Chem. 16, 3068–3086 (2018).  https://doi.org/10.1039/C8OB00469BCrossRefGoogle Scholar
  8. Fiore, M., Madanamoothoo, W., Berlioz-Barbier, A., Maniti, O., Girard-Egrot, A., Buchet, R., Strazewski, P.: Giant vesicles from rehydrated crude mixtures containing unexpected mixtures of amphiphiles formed under plausibly prebiotic conditions. Org. Biomol. Chem. 15, 4231–4240 (2017).  https://doi.org/10.1039/C7OB00708FCrossRefGoogle Scholar
  9. Fiore, M., Maniti, O., Girard-Egrot, A., Monnard, P.-A., Strazewski, P.: Glass microsphere-supported giant vesicles for the observation of self-reproduction of lipid boundaries. Angew. Chem. Int. Ed. 57, 282–286 (2018).  https://doi.org/10.1002/anie.201710708CrossRefGoogle Scholar
  10. Gopalakrishnan, G., Rouiller, I., Colman, D.R., Lennox, R.B.: Supported bilayers formed from different phospholipids on spherical silica substrates. Langmuir 25, 5455–5458 (2009).  https://doi.org/10.1021/la9006982CrossRefGoogle Scholar
  11. Hanczyc, M.M., Fujikawa, S.M., Szostak, J.W.: Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).  https://doi.org/10.1126/science.1089904CrossRefGoogle Scholar
  12. Hardy, M.D., Yang, J., Selimkhanov, J., Cole, C.M., Tsimring, L.S., Devaraj, N.K.: Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl. Acad. Sci. U.S.A. 112, 8187–8192 (2015).  https://doi.org/10.1073/pnas.1506704112CrossRefGoogle Scholar
  13. Hargreaves, W.R., Deamer, D.W.: Liposomes from ionic, single-chain amphiphiles. Biochemistry 17, 3759–3768 (1978).  https://doi.org/10.1021/bi00611a014CrossRefGoogle Scholar
  14. Johnson, J.M., Ha, T., Chu, S., Boxer, S.G.: Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys. J. 83, 3371–3379 (2002).  https://doi.org/10.1016/S0006-3495(02)75337-XCrossRefGoogle Scholar
  15. Kurihara, K., Okura, Y., Matsuo, M., Toyota, T., Suzuki, K., Sugawara, T.: A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 6, 8352–8359 (2015).  https://doi.org/10.1038/ncomms9352CrossRefGoogle Scholar
  16. Lopez, A., Fiore, M.: Investigating prebiotic protocells for a comprehensive understanding of the origins of life: a prebiotic systems chemistry perspective. Life 9, 49–70 (2019).  https://doi.org/10.3390/life9020049CrossRefGoogle Scholar
  17. Maurer, S.E., Deamer, D.W., Boncella, J.M., Monnard, P.-A.: Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9, 979–987 (2009).  https://doi.org/10.1089/ast.2009.0384CrossRefGoogle Scholar
  18. Monnard, P.-A., Deamer, D.W.: Preparation of vesicles from nonphospholipid amphiphiles. In: Methods in Enzymology, pp. 133–151. Elsevier (2003).  https://doi.org/10.1016/S0076-6879(03)72008-4Google Scholar
  19. Morigaki, K., Walde, P.: Giant vesicle formation from oleic acid/sodium oleate on glass surfaces induced by adsorbed hydrocarbon molecules. Langmuir 18, 10509–10511 (2002).  https://doi.org/10.1021/la026579rCrossRefGoogle Scholar
  20. Pereira de Souza, T., Holzer, M., Stano, P., Steiniger, F., May, S., Schubert, R., Fahr, A., Luisi, P.L.: New insights into the growth and transformation of vesicles: a free-flow electrophoresis study. J. Phys. Chem. B 119, 12212–12223 (2015).  https://doi.org/10.1021/acs.jpcb.5b05057CrossRefGoogle Scholar
  21. Pignataro, B., Steinem, C., Galla, H.-J., Fuchs, H., Janshoff, A.: Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. Biophys. J. 78, 487–498 (2000).  https://doi.org/10.1016/S0006-3495(00)76611-2CrossRefGoogle Scholar
  22. Rebaud, S., Maniti, O., Girard-Egrot, A.P.: Tethered bilayer lipid membranes (tBLMs): Interest and applications for biological membrane investigations. Biochimie 107, 135–142 (2014).  https://doi.org/10.1016/j.biochi.2014.06.021CrossRefGoogle Scholar
  23. Ruiz-Mirazo, K., Briones, C., de la Escosura, A.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).  https://doi.org/10.1021/cr2004844CrossRefGoogle Scholar
  24. Stano, P.: Is research on “Synthetic Cells” moving to the next level? Life 9, 3–32 (2018).  https://doi.org/10.3390/life9010003CrossRefGoogle Scholar
  25. Stano, P., Luisi, P.L.: Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639 (2010).  https://doi.org/10.1039/b913997dCrossRefGoogle Scholar
  26. Szostak, J.W.: The narrow road to the deep past. In search of the chemistry of the origin of life. Angew. Chem. Int. Ed. 56, 11037–11043 (2017).  https://doi.org/10.1002/anie.201704048CrossRefGoogle Scholar
  27. Toparlak, O.D., Mansy, S.S.: Progress in synthesizing protocells. Exp. Biol. Med. (Maywood) 244, 304–313 (2019).  https://doi.org/10.1177/1535370218816657CrossRefGoogle Scholar
  28. Varela, F.G., Maturana, H.R., Engel, H., Uribe, R.: Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974).  https://doi.org/10.1016/0303-2647(74)90031-8CrossRefGoogle Scholar
  29. Walde, P., Cosentino, K., Engel, H., Stano, P.: Giant vesicles: preparations and applications. Chem. Eur. J. Chem. Bio. 11, 848–865 (2010).  https://doi.org/10.1002/cbic.201000010CrossRefGoogle Scholar
  30. Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.L.: Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994).  https://doi.org/10.1021/ja00105a004CrossRefGoogle Scholar
  31. Wick, R., Walde, P., Luisi, P.L.: Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J. Am. Chem. Soc. 117, 1435–1436 (1995).  https://doi.org/10.1021/ja00109a031CrossRefGoogle Scholar
  32. Zhu, T.F., Szostak, J.W.: Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009).  https://doi.org/10.1021/ja900919cCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Augustin Lopez
    • 1
  • Carolina Chieffo
    • 1
  • Michele Fiore
    • 1
    Email author
  1. 1.Université de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246) Claude Bernard Lyon 1, Bâtiment LedererVilleurbanne CedexFrance

Personalised recommendations