Following the Growth and Division of Lipid Boundaries by Using Glass Microsphere-Supported Protocells

  • Augustin Lopez
  • Carolina Chieffo
  • Michele FioreEmail author
Conference paper
Part of the Lecture Notes in Bioengineering book series (LNBE)


Protocells are compartmented molecular networks which can be designed to study the origins of life. Glass microsphere-supported giant vesicles (MSGVs) are model protocells for which monodispersed glass beads are coated with a lipid bilayer thanks to avidin and biotinylated phospholipids. These supramolecular assemblies have proved to be extremely effective to understand certain phenomena related to the self-reproduction of protocells thanks to a series of intriguing experiments. First, the growth and division (G&D) of these giant vesicles was observed by epifluorescence and confocal microscopy when they were fed with fatty acids solutions at different feeding rates. Second, chemical analyses performed by a combination of GC-MS, UPLC-HRMS and phospholipid-specific assay, allowed to independently study the composition of the vesicles obtained after G&D.


Phospholipids Fatty acids Membranes Vesicles Protocells Self-reproduction Autopoietic systems 



MF thanks Prof. Stefano Piotto and Prof. Federico Rossi that gave him the opportunity to present preliminary results on this topic at the 3rd International Conference on Bio and Nanomaterials (BIONAM) – September 29–October 3, 2019.

Conflict of Interest

The authors declare no conflict of interest.


  1. Albertsen, A.N., Duffy, C.D., Sutherland, J.D., Monnard, P.-A.: Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants. Astrobiology 14, 462–472 (2014a). Scholar
  2. Albertsen, A.N., Maurer, S.E., Nielsen, K.A., Monnard, P.-A.: Transmission of photo-catalytic function in a self-replicating chemical system: in situ amphiphile production over two protocell generations. Chem. Commun. 50, 8989–8992 (2014b). Scholar
  3. Berclaz, N., Müller, M., Walde, P., Luisi, P.L.: Growth and transformation of vesicles studied by ferritin labeling and cryotransmission electron microscopy. J. Phys. Chem. B 105, 1056–1064 (2001). Scholar
  4. Božič, B., Svetina, S.: A relationship between membrane properties forms the basis of a selectivity mechanism for vesicle self-reproduction. Eur. Biophys. J. 33, 565–571 (2004). Scholar
  5. Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A.W., Schultz, P.: Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1985). Scholar
  6. Fayolle, D., Altamura, E., D’Onofrio, A., Madanamothoo, W., Fenet, B., Mavelli, F., Buchet, R., Stano, P., Fiore, M., Strazewski, P.: Crude phosphorylation mixtures containing racemic lipid amphiphiles self-assemble to give stable primitive compartments. Sci. Rep. 7, 18106–18114 (2017). Scholar
  7. Fiore, M.: The synthesis of mono-alkyl phosphates and their derivatives: an overview of their nature, preparation and use, including synthesis under plausible prebiotic conditions. Org. Biomol. Chem. 16, 3068–3086 (2018). Scholar
  8. Fiore, M., Madanamoothoo, W., Berlioz-Barbier, A., Maniti, O., Girard-Egrot, A., Buchet, R., Strazewski, P.: Giant vesicles from rehydrated crude mixtures containing unexpected mixtures of amphiphiles formed under plausibly prebiotic conditions. Org. Biomol. Chem. 15, 4231–4240 (2017). Scholar
  9. Fiore, M., Maniti, O., Girard-Egrot, A., Monnard, P.-A., Strazewski, P.: Glass microsphere-supported giant vesicles for the observation of self-reproduction of lipid boundaries. Angew. Chem. Int. Ed. 57, 282–286 (2018). Scholar
  10. Gopalakrishnan, G., Rouiller, I., Colman, D.R., Lennox, R.B.: Supported bilayers formed from different phospholipids on spherical silica substrates. Langmuir 25, 5455–5458 (2009). Scholar
  11. Hanczyc, M.M., Fujikawa, S.M., Szostak, J.W.: Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003). Scholar
  12. Hardy, M.D., Yang, J., Selimkhanov, J., Cole, C.M., Tsimring, L.S., Devaraj, N.K.: Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth. Proc. Natl. Acad. Sci. U.S.A. 112, 8187–8192 (2015). Scholar
  13. Hargreaves, W.R., Deamer, D.W.: Liposomes from ionic, single-chain amphiphiles. Biochemistry 17, 3759–3768 (1978). Scholar
  14. Johnson, J.M., Ha, T., Chu, S., Boxer, S.G.: Early steps of supported bilayer formation probed by single vesicle fluorescence assays. Biophys. J. 83, 3371–3379 (2002). Scholar
  15. Kurihara, K., Okura, Y., Matsuo, M., Toyota, T., Suzuki, K., Sugawara, T.: A recursive vesicle-based model protocell with a primitive model cell cycle. Nat. Commun. 6, 8352–8359 (2015). Scholar
  16. Lopez, A., Fiore, M.: Investigating prebiotic protocells for a comprehensive understanding of the origins of life: a prebiotic systems chemistry perspective. Life 9, 49–70 (2019). Scholar
  17. Maurer, S.E., Deamer, D.W., Boncella, J.M., Monnard, P.-A.: Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9, 979–987 (2009). Scholar
  18. Monnard, P.-A., Deamer, D.W.: Preparation of vesicles from nonphospholipid amphiphiles. In: Methods in Enzymology, pp. 133–151. Elsevier (2003). Scholar
  19. Morigaki, K., Walde, P.: Giant vesicle formation from oleic acid/sodium oleate on glass surfaces induced by adsorbed hydrocarbon molecules. Langmuir 18, 10509–10511 (2002). Scholar
  20. Pereira de Souza, T., Holzer, M., Stano, P., Steiniger, F., May, S., Schubert, R., Fahr, A., Luisi, P.L.: New insights into the growth and transformation of vesicles: a free-flow electrophoresis study. J. Phys. Chem. B 119, 12212–12223 (2015). Scholar
  21. Pignataro, B., Steinem, C., Galla, H.-J., Fuchs, H., Janshoff, A.: Specific adhesion of vesicles monitored by scanning force microscopy and quartz crystal microbalance. Biophys. J. 78, 487–498 (2000). Scholar
  22. Rebaud, S., Maniti, O., Girard-Egrot, A.P.: Tethered bilayer lipid membranes (tBLMs): Interest and applications for biological membrane investigations. Biochimie 107, 135–142 (2014). Scholar
  23. Ruiz-Mirazo, K., Briones, C., de la Escosura, A.: Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014). Scholar
  24. Stano, P.: Is research on “Synthetic Cells” moving to the next level? Life 9, 3–32 (2018). Scholar
  25. Stano, P., Luisi, P.L.: Achievements and open questions in the self-reproduction of vesicles and synthetic minimal cells. Chem. Commun. 46, 3639 (2010). Scholar
  26. Szostak, J.W.: The narrow road to the deep past. In search of the chemistry of the origin of life. Angew. Chem. Int. Ed. 56, 11037–11043 (2017). Scholar
  27. Toparlak, O.D., Mansy, S.S.: Progress in synthesizing protocells. Exp. Biol. Med. (Maywood) 244, 304–313 (2019). Scholar
  28. Varela, F.G., Maturana, H.R., Engel, H., Uribe, R.: Autopoiesis: the organization of living systems, its characterization and a model. Biosystems 5, 187–196 (1974). Scholar
  29. Walde, P., Cosentino, K., Engel, H., Stano, P.: Giant vesicles: preparations and applications. Chem. Eur. J. Chem. Bio. 11, 848–865 (2010). Scholar
  30. Walde, P., Wick, R., Fresta, M., Mangone, A., Luisi, P.L.: Autopoietic self-reproduction of fatty acid vesicles. J. Am. Chem. Soc. 116, 11649–11654 (1994). Scholar
  31. Wick, R., Walde, P., Luisi, P.L.: Light microscopic investigations of the autocatalytic self-reproduction of giant vesicles. J. Am. Chem. Soc. 117, 1435–1436 (1995). Scholar
  32. Zhu, T.F., Szostak, J.W.: Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705–5713 (2009). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Augustin Lopez
    • 1
  • Carolina Chieffo
    • 1
  • Michele Fiore
    • 1
    Email author
  1. 1.Université de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246) Claude Bernard Lyon 1, Bâtiment LedererVilleurbanne CedexFrance

Personalised recommendations