Advertisement

Further Fertility Preservation Techniques

  • Ralf DittrichEmail author
  • Michael von Wolff
Chapter
  • 12 Downloads

Abstract

Cryopreservation of oocytes and ovarian tissue as well as the administration of GnRH agonists and transposition of the ovaries are well established as fertility preservation methods. In addition, there are alternative techniques that are less well established or still experimental. These techniques include medication to protect the ovaries, such as AS101, CIP and AMH, measures to use the ovarian tissue in patients with leukaemia and other diseases with a high risk of malignant cells in the ovarian tissue such as xenotransplantation, IVG and artificial ovaries, stem cells and uterus transplantation.

Keywords

Fertility preservation FertiPROTEKT Infertility Ovarian tissue Transplantation 

References

  1. 1.
    Roesner S, von Wolff M, Elsaesser M, Roesner K, Reuner G, Pietz J, Bruckner T, Strowitzki T. Two-year development of children conceived by IVM: a prospective controlled single-blinded study. Hum Reprod. 2017;32:1341–50.  https://doi.org/10.1093/humrep/dex068.CrossRefPubMedGoogle Scholar
  2. 2.
    Grynberg M, Poulain M, le Parco S, Sifer C, Fanchin R, Frydman N. Similar in vitro maturation rates of oocytes retrieved during the follicular or luteal phase offer flexible options for urgent fertility preservation in breast cancer patients. Hum Reprod. 2016;31:623–9.  https://doi.org/10.1093/humrep/dev325.CrossRefPubMedGoogle Scholar
  3. 3.
    Quinn MM, Cakmak H, Letourneau JM, Cedars MI, Rosen MP. Response to ovarian stimulation is not impacted by a breast cancer diagnosis. Hum Reprod. 2017;32:568–74.  https://doi.org/10.1093/humrep/dew355.CrossRefPubMedGoogle Scholar
  4. 4.
    von Wolff M, Bruckner T, Strowitzki T, Germeyer A. Fertility preservation: ovarian response to freeze oocytes is not affected by different malignant diseases-an analysis of 992 stimulations. J Assist Reprod Genet. 2018;35:1713–9.  https://doi.org/10.1007/s10815-018-1227-0.CrossRefGoogle Scholar
  5. 5.
    Cao YX, Chian RC. Fertility preservation with immature and in vitro matured oocytes. Semin Reprod Med. 2009;27:456–64.  https://doi.org/10.1055/s-0029-1241055.CrossRefPubMedGoogle Scholar
  6. 6.
    Roesner S, Von Wolff M, Eberhardt I, Beuter-Winkler P, Toth B, Strowitzki T. In vitro maturation: a five-year experience. Acta Obstet Gynecol Scand. 2012;91:22–7.  https://doi.org/10.1111/j.1600-0412.2011.01299.CrossRefPubMedGoogle Scholar
  7. 7.
    Huang JY, Tulandi T, Holzer H, Tan SL, Chian RC. Combining ovarian tissue cryobanking with retrieval of immature oocytes followed by in vitro maturation and vitrification: an additional strategy of fertility preservation. Fertil Steril. 2008;89:567–72.CrossRefGoogle Scholar
  8. 8.
    Uzelac PS, Delaney AA, Christensen GL, Bohler HC, Nakajima ST. Live birth following in vitro maturation of oocytes retrieved from extracorporeal ovarian tissue aspiration and embryo cryopreservation for 5 years. Fertil Steril. 2015;104:1259–60.  https://doi.org/10.1016/j.fertnstert.2015.07.1148.CrossRefGoogle Scholar
  9. 9.
    Abir R, Ben-Aharon I, Garor R, Yaniv I, Ash S, Stemmer SM, Ben-Haroush A, Freud E, Kravarusic D, Sapir O, Fisch B. Cryopreservation of in vitro matured oocytes in addition to ovarian tissue freezing for fertility preservation in paediatric female cancer patients before and after cancer therapy. Hum Reprod. 2016;31:750–62.  https://doi.org/10.1093/humrep/dew007.CrossRefPubMedGoogle Scholar
  10. 10.
    Duncan FE. Egg quality during the pubertal transition - is youth all it’s cracked up to be? Front Endocrinol (Lausanne). 2017;8:226.  https://doi.org/10.3389/fendo.2017.00226.CrossRefGoogle Scholar
  11. 11.
    Sredni B, Caspi RR, Klein A, Kalechman Y, Danziger Y, Ben Ya’akov M, Tamari T, Shalit F, Albeck M. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature. 1987;330:173–6.CrossRefGoogle Scholar
  12. 12.
    Sredni B. Immunomodulating tellurium compounds as anti-cancer agents. Semin Cancer Biol. 2012;22:60–9.  https://doi.org/10.1016/j.semcancer.2011.12.003.CrossRefPubMedGoogle Scholar
  13. 13.
    Carmely A, Meirow D, Peretz A, Albeck M, Bartoov B, Sredni B. Protective effect of the immunomodulator AS101 against cyclophosphamide-induced testicular damage in mice. Hum Reprod. 2009;24:1322–9.  https://doi.org/10.1093/humrep/den481.CrossRefPubMedGoogle Scholar
  14. 14.
    Kalich-Philosoph L, Roness H, Carmely A, Fishel-Bartal M, Ligumsky H, Paglin S, Wolf I, Kanety H, Sredni B, Meirow D. Cyclophosphamide triggers follicle activation and "burnout"; AS101 prevents follicle loss and preserves fertility. Sci Transl Med. 2013;5:185ra62.  https://doi.org/10.1126/scitranslmed.3005402.CrossRefPubMedGoogle Scholar
  15. 15.
    Di Emidio G, Rossi G, Bonomo I, Alonso GL, Sferra R, Vetuschi A, Artini PG, Provenzani A, Falone S, Carta G, D’Alessandro AM, Amicarelli F, Tatone C. The natural carotenoid crocetin and the synthetic tellurium compound AS101 protect the ovary against cyclophosphamide by modulating SIRT1 and mitochondrial markers. Oxidative Med Cell Longev. 2017;2017:8928604.  https://doi.org/10.1155/2017/8928604.CrossRefGoogle Scholar
  16. 16.
    Pascuali N, Scotti L, Di Pietro M, Oubiña G, Bas D, May M, Gómez Muñoz A, Cuasnicú PS, Cohen DJ, Tesone M, Abramovich D, Parborell F. Ceramide-1-phosphate has protective properties against cyclophosphamide-induced ovarian damage in a mice model of premature ovarian failure. Hum Reprod. 2018;33:844–9.  https://doi.org/10.1093/humrep/dey045.CrossRefPubMedGoogle Scholar
  17. 17.
    Sonigo C, Beau I, Grynberg M, Binart N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice. FASEB J. 2019;33:1278–87.  https://doi.org/10.1096/fj.201801089R.CrossRefPubMedGoogle Scholar
  18. 18.
    Roness H, Spector I, Leichtmann-Bardoogo Y, Savino AM, Dereh-Haim S, Meirow D. Pharmacological administration of recombinant human AMH rescues ovarian reserve and preserves fertility in a mouse model of chemotherapy, without interfering with anti-tumoural effects. J Assist Reprod Genet. 2019;36:1793–803.  https://doi.org/10.1007/s10815-019-01507-9.CrossRefPubMedGoogle Scholar
  19. 19.
    Dittrich R, Lotz L, Fehm T, Krüssel J, von Wolff M, Toth B, van der Ven H, Schüring AN, Würfel W, Hoffmann I, Beckmann MW. Xenotransplantation of cryopreserved human ovarian tissue-a systematic review of MII oocyte maturation and discussion of it as a realistic option for restoring fertility after cancer treatment. Fertil Steril. 2015;103:1557–65.  https://doi.org/10.1016/j.fertnstert.2015.03.001.CrossRefPubMedGoogle Scholar
  20. 20.
    Snow M, Cox SL, Jenkin G, Trounson A, Shaw J. Generation of live young from xenografted mouse ovaries. Science. 2002;297:2227.CrossRefGoogle Scholar
  21. 21.
    Lotz L, Liebenthron J, Nichols-Burns SM, Montag M, Hoffmann I, Beckmann MW, van der Ven H, Töpfer D, Dittrich R. Spontaneous antral follicle formation and metaphase II oocyte from a non-stimulated prepubertal ovarian tissue xenotransplant. Reprod Biol Endocrinol. 2014;12:41.  https://doi.org/10.1186/1477-7827-12-41.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fishman JA, Patience C. Xenotransplantation: infectious risk revisited. Am J Transplant. 2004;4:1383–90.CrossRefGoogle Scholar
  23. 23.
    Telfer EE, Zelinski MB. Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril. 2013;99:1523–33.  https://doi.org/10.1016/j.fertnstert.2013.03.043.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McLaughlin M, Albertini DF, Wallace WHB, Anderson RA, Telfer EE. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod. 2018;24:135–42.  https://doi.org/10.1093/molehr/gay002.CrossRefPubMedGoogle Scholar
  25. 25.
    Vanacker J, Dolmans MM, Luyckx V, Donnez J, Amorim CA. First transplantation of isolated murine follicles in alginate. Regen Med. 2014;9:609–19.  https://doi.org/10.2217/rme.14.33.CrossRefPubMedGoogle Scholar
  26. 26.
    Laronda MM, Rutz AL, Xiao S, Whelan KA, Duncan FE, Roth EW, Woodruff TK, Shah RN. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nat Commun. 2017;8:15261.  https://doi.org/10.1038/ncomms15261.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chiti MC, Dolmans MM, Mortiaux L, Zhuge F, Ouni E, Shahri PAK, Van Ruymbeke E, Champagne SD, Donnez J, Amorim CA. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity. J Assist Reprod Genet. 2018;35:41–8.  https://doi.org/10.1007/s10815-017-1091-3.CrossRefPubMedGoogle Scholar
  28. 28.
    Liverani L, Raffel N, Fattahi A, Preis A, Hoffmann I, Boccaccini AR, Beckmann MW, Dittrich R. Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study. Sci Rep. 2019;9:1150.  https://doi.org/10.1038/s41598-018-37640-1.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Soares M, Sahrari K, Amorim CA, Saussoy P, Donnez J, Dolmans MM. Evaluation of a human ovarian follicle isolation technique to obtain disease-free follicle suspensions before safely grafting to cancer patients. Fertil Steril. 2015;104:672–680.e2.  https://doi.org/10.1016/j.fertnstert.2015.05.021.CrossRefPubMedGoogle Scholar
  30. 30.
    Telfer EE, Anderson RA. The existence and potential of germline stem cells in the adult mammalian ovary. Climacteric. 2019;22:22–6.  https://doi.org/10.1080/13697137.2018.1543264.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Brännström M, Enskog A, Kvarnström N, Ayoubi JM, Dahm-Kähler P. Global results of human uterus transplantation and strategies for pre-transplantation screening of donors. Fertil Steril. 2019;112:3–10.  https://doi.org/10.1016/j.fertnstert.2019.05.030.CrossRefPubMedGoogle Scholar
  32. 32.
    Brännström M, Dahm-Kähler P. Uterus transplantation and fertility preservation. Best Pract Res Clin Obstet Gynaecol. 2019;55:109–16.  https://doi.org/10.1016/j.bpobgyn.2018.12.006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University Hospital Erlangen, OB/GYN, Friedrich-Alexander University Erlangen-Nürnberg (FAU)ErlangenGermany
  2. 2.Division of Gynaecological Endocrinology and Reproductive MedicineUniversity Women’s Hospital, University of BernBernSwitzerland

Personalised recommendations