Towards the Development of a Comprehensive Theoretical Model for Examining the Cloud Computing Adoption at the Organizational Level

  • Yousef A. M. Qasem
  • Rusli Abdullah
  • Yusmadi Yah
  • Rodziah Atan
  • Mohammed A. Al-SharafiEmail author
  • Mostafa Al-Emran
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 295)


Cloud computing (CC) is a new computing paradigm in higher educational institutions (HEIs). CC allows educational services to be delivered at anytime anywhere settings. Despite all its advantages, the adoption of CC in general and cloud-based education as a service (CEaaS) in specific is still not yet clearly understood in HEIs. Besides, there is a scarce of knowledge regarding the adoption of CC at the organizational level. Therefore, this study aims to develop a comprehensive theoretical model through the integration of four dominant theories, including the technology-organization-environment framework (TOE), fit viability model (FVM), diffusion of innovations (DOI), and institutional theory (INT). The primary purpose of the developed model is to understand the factors affecting the CC adoption at the organizational level of HEIs. It is believed that the developed model would assist the decision-makers in HEIs to make informed decisions concerning the future implementation of CC. Theoretical contributions and practical implications were also discussed.


Cloud computing Adoption TOE framework FVM DOI INT theory Higher education 



The authors would like to thank Universiti Putra Malaysia (UPM)—RMC—for supporting and funding this research under Grant No. 95223100.


  1. 1.
    Mell, P., Grance, T.: The NIST definition of cloud computing (2011)Google Scholar
  2. 2.
    Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  3. 3.
    Abdullah, R., Eri, Z.D., Talib, A.M.: A model of knowledge management system for facilitating knowledge as a service (KaaS) in cloud computing environment. In: 2011 International Conference on Research and Innovation in Information Systems (ICRIIS), pp. 1–4. IEEE (2011)Google Scholar
  4. 4.
    AlAjmi, Q., Arshah, R.A., Kamaludin, A., Sadiq, A.S., Al-Sharafi, M.A.: A conceptual model of e-learning based on cloud computing adoption in higher education institutions. In: 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA), 21–23 Nov 2017, pp. 1–6 (2017).
  5. 5.
    Thomas, P.Y.: Cloud computing: a potential paradigm for practising the scholarship of teaching and learning. Electron. Libr. 29(2), 214–224 (2011). Scholar
  6. 6.
    Razak, S.F.A.: Cloud computing in Malaysia universities. In: 2009 Innovative Technologies in Intelligent Systems and Industrial Applications, 25–26 July 2009, pp. 101–106 (2009).
  7. 7.
    Abdullah, R., Alsharaei, Y.A.: A mobile knowledge as a service (mKaaS) model of knowledge management system in facilitating knowledge sharing of cloud education community environment. In: 2016 Third International Conference on Information Retrieval and Knowledge Management (CAMP). IEEE, pp. 143–148 (2016)Google Scholar
  8. 8.
    Sabi, H.M., Uzoka, F.M.E., Langmia, K., Njeh, F.N.: Conceptualizing a model for adoption of cloud computing in education (in English). Int. J. Inf. Manage. 36(2), 183–191 (2016). Scholar
  9. 9.
    Alharthi, A., Alassafi, M.O., Walters, R.J., Wills, G.B.: An exploratory study for investigating the critical success factors for cloud migration in the Saudi Arabian higher education context. Telematics Inform. 34(2), 664–678 (2017).
  10. 10.
    Tornatzky, L.G., Fleischer, M., Chakrabarti, A.K.: Processes of Technological Innovation. Lexington Books, Lexington (1990)Google Scholar
  11. 11.
    Tjan, A.K.: Finally, a way to put your internet portfolio in order. Harvard Bus. Rev. 79(2), 76–85, 156 (2001)Google Scholar
  12. 12.
    Rogers, E.M.: Diffusion of Innovations, vol. 12. Free Press, New York (1995)Google Scholar
  13. 13.
    Chatterjee, D., Grewal, R., Sambamurthy, V.: Shaping up for e-commerce: institutional enablers of the organizational assimilation of web technologies. MIS Q. 65–89 (2002)Google Scholar
  14. 14.
    Sultan, N.: Cloud computing for education: a new dawn? Int. J. Inf. Manage. 30(2), 109–116 (2010).
  15. 15.
    Thorsteinsson, G., Page, T., Niculescu, A.: Using virtual reality for developing design communication. Stud. Inform. Control 19(1), 93–106 (2010)CrossRefGoogle Scholar
  16. 16.
    Pocatilu, P., Alecu, F., Vetrici, M.: Using cloud computing for E-learning systems. In: Proceedings of the 8th WSEAS International Conference on Data Networks, Communications, Computers, pp. 54–59. Citeseer (2009)Google Scholar
  17. 17.
    Katz, R., Goldstein, P., Yanosky, R., Rushlo, B.: Cloud computing in higher education. In: EDUCAUSE [Online], vol. 10. Retrieved October 5, 2010. (2010)
  18. 18.
    Sasikala, S., Prema, S.: Massive centralized cloud computing (MCCC) exploration in higher education (2011)Google Scholar
  19. 19.
    Sabi, H.M., Uzoka, F.-M.E., Langmia, K., Njeh, F.N., Tsuma, C.K.: A cross-country model of contextual factors impacting cloud computing adoption at universities in sub-Saharan Africa. Inform. Syst. Front. 1–24 (2017).
  20. 20.
    Alajmi, Q.A., Kamaludin, A., Arshah, R.A., Al-Sharafi, M.A.: The effectiveness of cloud-based e-learning towards quality of academic services: an Omanis. Expert view. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 9(4), 158–164 (2018).
  21. 21.
    Ashtari, S., Eydgahi, A.: Student perceptions of cloud applications effectiveness in higher education. J. Comput. Sci. 23, 173–180 (2017)CrossRefGoogle Scholar
  22. 22.
    Militaru, G., Purcărea, A.A., Negoiţă, O.D., Niculescu, A.: Examining cloud computing adoption intention in higher education: exploratory study. In: International Conference on Exploring Services Science, pp. 732–741. Springer, Berlin (2016)Google Scholar
  23. 23.
    Bhatiasevi, V., Naglis, M.: Investigating the structural relationship for the determinants of cloud computing adoption in education. Educ. Inf. Technol. 21(5), 1197–1223 (2016)CrossRefGoogle Scholar
  24. 24.
    Almazroi, A.A., Shen, H., Teoh, K.-K., Babar, M.A.: Cloud for e-learning: determinants of its adoption by university students in a developing country. In: 2016 IEEE 13th International Conference on E-Business Engineering (ICEBE), pp. 71–78. IEEE (2016)Google Scholar
  25. 25.
    Hwang, B.-N., Huang, C.-Y., Yang, C.-L.: Determinants and their causal relationships affecting the adoption of cloud computing in science and technology institutions. Innovation 18(2), 164–190 (2016)CrossRefGoogle Scholar
  26. 26.
    Tashkandi, A.N., Al-Jabri, I.M.: Cloud computing adoption by higher education institutions in Saudi Arabia: an exploratory study. Cluster Comput. 18(4), 1527–1537 (2015)CrossRefGoogle Scholar
  27. 27.
    Behrend, T.S., Wiebe, E.N., London, J.E., Johnson, E.C.: Cloud computing adoption and usage in community colleges. Behav. Inf. Technol. 30(2), 231–240 (2011)CrossRefGoogle Scholar
  28. 28.
    Hsu, P.-F., Kraemer, K.L., Dunkle, D.: Determinants of e-business use in US firms. Int. J. Electron. Commer. 10(4), 9–45 (2006)CrossRefGoogle Scholar
  29. 29.
    Martins, R., Oliveira, T., Thomas, M.A.: An empirical analysis to assess the determinants of SaaS diffusion in firms. Comput. Hum. Behav. 62, 19–33 (2016)CrossRefGoogle Scholar
  30. 30.
    Oliveira, T., Martins, M.F.: Literature review of information technology adoption models at firm level. Electron. J. Inf. Syst. Eval. 14(1), 110–121 (2011)Google Scholar
  31. 31.
    Mohammed, F., Ibrahim, O., Nilashi, M., Alzurqa, E.: Cloud computing adoption model for e-government implementation. Inf. Dev. 33(3), 303–323 (2017)CrossRefGoogle Scholar
  32. 32.
    Goodhue, D.L., Thompson, R.L.: Task-technology fit and individual performance. MIS Q. 213–236 (1995)Google Scholar
  33. 33.
    Lee, C.-C., Cheng, H.K., Cheng, H.-H.: An empirical study of mobile commerce in insurance industry: task–technology fit and individual differences. Decis. Support Syst. 43(1), 95–110 (2007)CrossRefGoogle Scholar
  34. 34.
    Dishaw, M.T., Strong, D.M.: Extending the technology acceptance model with task–technology fit constructs. Inf. Manage. 36(1), 9–21 (1999)CrossRefGoogle Scholar
  35. 35.
    Teo, T.S., Men, B.: Knowledge portals in Chinese consulting firms: a task–technology fit perspective. Eur. J. Inf. Syst. 17(6), 557–574 (2008)CrossRefGoogle Scholar
  36. 36.
    Nance, W.D., Straub, D.W.: An investigation of task/technology fit and information technology choices in knowledge work. J. Inf. Technol. Manage. 7, 1–14 (1996)Google Scholar
  37. 37.
    Lam, T., Cho, V., Qu, H.: A study of hotel employee behavioral intentions towards adoption of information technology. Int. J. Hospitality Manage. 26(1), 49–65 (2007)CrossRefGoogle Scholar
  38. 38.
    Yadegaridehkordi, E., Iahad, N.A., Ahmad, N.: Task-technology fit assessment of cloud-based collaborative learning technologies. In: Remote Work and Collaboration: Breakthroughs in Research and Practice, p. 371. IGI Global, USA (2017)Google Scholar
  39. 39.
    Chan, F.T., Chong, A.Y.-L.: Determinants of mobile supply chain management system diffusion: a structural equation analysis of manufacturing firms. Int. J. Prod. Res. 51(4), 1196–1213 (2013)CrossRefGoogle Scholar
  40. 40.
    Chong, A.Y.-L., Lin, B., Ooi, K.-B., Raman, M.: Factors affecting the adoption level of c-commerce: an empirical study. J. Comput. Inf. Syst. 50(2), 13–22 (2009)Google Scholar
  41. 41.
    Ciganek, A.P., Haseman, W., Ramamurthy, K.: Time to decision: the drivers of innovation adoption decisions. Enterp. Inf. Syst. 8(2), 279–308 (2014)CrossRefGoogle Scholar
  42. 42.
    Oliveira, T., Thomas, M., Espadanal, M.: Assessing the determinants of cloud computing adoption: an analysis of the manufacturing and services sectors. Inf. Manag. 51(5), 497–510 (2014)CrossRefGoogle Scholar
  43. 43.
    Wang, Y.-M., Wang, Y.-S., Yang, Y.-F.: Understanding the determinants of RFID adoption in the manufacturing industry. Technol. Forecast. Soc. Change 77(5), 803–815 (2010)CrossRefGoogle Scholar
  44. 44.
    Yoon, T.E., George, J.F.: Why aren’t organizations adopting virtual worlds? Comput. Hum. Behav. 29(3), 772–790 (2013)CrossRefGoogle Scholar
  45. 45.
    Wymer, S.A., Regan, E.A.: Factors influencing e-commerce adoption and use by small and medium businesses. Electron. Markets 15(4), 438–453 (2005)CrossRefGoogle Scholar
  46. 46.
    Chau, P.Y., Tam, K.Y.: Factors affecting the adoption of open systems: an exploratory study. MIS Q. 1–24 (1997)Google Scholar
  47. 47.
    Kuan, K.K., Chau, P.Y.: A perception-based model for EDI adoption in small businesses using a technology–organization–environment framework. Inf. Manage. 38(8), 507–521 (2001)CrossRefGoogle Scholar
  48. 48.
    Zhu, K., Kraemer, K.L.: Post-adoption variations in usage and value of e-business by organizations: cross-country evidence from the retail industry. Inf. Syst. Res. 16(1), 61–84 (2005)CrossRefGoogle Scholar
  49. 49.
    Zhu, K., Dong, S., Xu, S.X., Kraemer, K.L.: Innovation diffusion in global contexts: determinants of post-adoption digital transformation of European companies. Eur. J. Inf. Syst. 15(6), 601–616 (2006)CrossRefGoogle Scholar
  50. 50.
    Zhu, K., Kraemer, K.L., Xu, S.: The process of innovation assimilation by firms in different countries: a technology diffusion perspective on e-business. Manage. Sci. 52(10), 1557–1576 (2006)CrossRefGoogle Scholar
  51. 51.
    Liang, H., Saraf, N., Hu, Q., Xue, Y.: Assimilation of enterprise systems: the effect of institutional pressures and the mediating role of top management. MIS Q. 59–87 (2007)Google Scholar
  52. 52.
    Lin, H.-F., Lin, S.-M.: Determinants of e-business diffusion: a test of the technology diffusion perspective. Technovation 28(3), 135–145 (2008)CrossRefGoogle Scholar
  53. 53.
    Ramdani, B., Kawalek, P., Lorenzo, O.: Predicting SMEs’ adoption of enterprise systems. J. Enterp. Inf. Manage. 22(1/2), 10–24 (2009)CrossRefGoogle Scholar
  54. 54.
    Shah Alam, S.: Adoption of internet in Malaysian SMEs. J. Small Bus. Enterp. Dev. 16(2), 240–255 (2009)Google Scholar
  55. 55.
    Azadegan, A., Teich, J.: Effective benchmarking of innovation adoptions: a theoretical framework for e-procurement technologies. Benchmarking Int. J. 17(4), 472–490 (2010)Google Scholar
  56. 56.
    Tsai, M.-C., Lee, W., Wu, H.-C.: Determinants of RFID adoption intention: evidence from Taiwanese retail chains. Inf. Manage. 47(5), 255–261 (2010)CrossRefGoogle Scholar
  57. 57.
    Oliveira, T., Martins, M.F.: Understanding e-business adoption across industries in European countries. Ind. Manage. Data Syst. 110(9), 1337–1354 (2010)CrossRefGoogle Scholar
  58. 58.
    Ghobakhloo, M., Arias-Aranda, D., Benitez-Amado, J.: Adoption of e-commerce applications in SMEs. Ind. Manage. Data Syst. 111(8), 1238–1269 (2011)CrossRefGoogle Scholar
  59. 59.
    Ifinedo, P.: An empirical analysis of factors influencing Internet/e-business technologies adoption by SMEs in Canada. Int. J. Inf. Technol. Decis. Making 10(04), 731–766 (2011)CrossRefGoogle Scholar
  60. 60.
    Thiesse, F., Staake, T., Schmitt, P., Fleisch, E.: The rise of the “next-generation bar code”: an international RFID adoption study. Supply Chain Manage. Int. J. 16(5), 328–345 (2011)CrossRefGoogle Scholar
  61. 61.
    Low, C., Chen, Y., Wu, M.: Understanding the determinants of cloud computing adoption. Ind. Manage. Data Syst. 111(7), 1006–1023 (2011). Scholar
  62. 62.
    Butler, T.: Compliance with institutional imperatives on environmental sustainability: building theory on the role of Green IS. J. Strateg. Inf. Syst. 20(1), 6–26 (2011)CrossRefGoogle Scholar
  63. 63.
    Klein, R.: Assimilation of internet-based purchasing applications within medical practices. Inf. Manage. 49(3), 135–141 (2012)CrossRefGoogle Scholar
  64. 64.
    Lin, A., Chen, N.-C.: Cloud computing as an innovation: perception, attitude, and adoption. Int. J. Inf. Manage. 32(6), 533–540 (2012).
  65. 65.
    Nkhoma, M.Z., Dang, D.P., De Souza-Daw, A.: Contributing factors of cloud computing adoption: a technology-organisation-environment framework approach. In: Proceedings of the European Conference on Information Management & Evaluation, pp. 180–189 (2013)Google Scholar
  66. 66.
    Abdollahzadegan, A., Hussin, C., Razak, A., Moshfegh Gohary, M., Amini, M.: The organizational critical success factors for adopting cloud computing in SMEs (2013)Google Scholar
  67. 67.
    Wu, Y., Cegielski, C.G., Hazen, B.T., Hall, D.J.: Cloud computing in support of supply chain information system infrastructure: understanding when to go to the cloud. J. Supply Chain Manage. 49(3), 25–41 (2013)CrossRefGoogle Scholar
  68. 68.
    Heikkilä, J.-P.: An institutional theory perspective on e-HRM’s strategic potential in MNC subsidiaries. J. Strateg. Inf. Syst. 22(3), 238–251 (2013)CrossRefGoogle Scholar
  69. 69.
    Salum, K.H., Rozan, M.Z.A.: Conceptual model for cloud ERP adoption for SMEs. J. Theor. Appl. Inf. Technol. 95(4), 743 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Yousef A. M. Qasem
    • 1
  • Rusli Abdullah
    • 1
  • Yusmadi Yah
    • 1
  • Rodziah Atan
    • 1
  • Mohammed A. Al-Sharafi
    • 2
    Email author
  • Mostafa Al-Emran
    • 3
  1. 1.Faculty of Computer Science and Information TechnologyUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Faculty of ComputingUniversiti Malaysia PahangGambangMalaysia
  3. 3.Department of Information TechnologyAl Buraimi University CollegeAl BuraimiOman

Personalised recommendations