Advertisement

Automatic Polyp Segmentation Using Convolutional Neural Networks

  • Sara Hosseinzadeh KassaniEmail author
  • Peyman Hosseinzadeh Kassani
  • Michal J. Wesolowski
  • Kevin A. Schneider
  • Ralph Deters
Conference paper
  • 210 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12109)

Abstract

Colorectal cancer is the third most common cancer-related death after lung cancer and breast cancer worldwide. The risk of developing colorectal cancer could be reduced by early diagnosis of polyps during a colonoscopy. Computer-aided diagnosis systems have the potential to be applied for polyp screening and reduce the number of missing polyps. In this paper, we compare the performance of different deep learning architectures as feature extractors, i.e. ResNet, DenseNet, InceptionV3, InceptionResNetV2 and SE-ResNeXt in the encoder part of a U-Net architecture. We validated the performance of presented ensemble models on the CVC-Clinic (GIANA 2018) dataset. The DenseNet169 feature extractor combined with U-Net architecture outperformed the other counterparts and achieved an accuracy of 99.15%, Dice similarity coefficient of 90.87%, and Jaccard index of 83.82%.

Keywords

Convolutional neural networks Polyp segmentation Colonoscopy images Computer-aided diagnosis Encoder-decoder 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Akbari, M., et al.: Polyp segmentation in colonoscopy images using fully convolutional network. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 69–72. IEEE (2018)Google Scholar
  5. 5.
    Akbari, M., et al.: Classification of informative frames in colonoscopy videos using convolutional neural networks with binarized weights. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 65–68. IEEE (2018)Google Scholar
  6. 6.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)CrossRefGoogle Scholar
  7. 7.
    Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilariño, F.: WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians. Comput. Med. Imag. Graph. 43, 99–111 (2015)Google Scholar
  8. 8.
    Bernal, J., Sánchez, J., Vilarino, F.: Towards automatic polyp detection with a polyp appearance model. Pattern Recogn. 45(9), 3166–3182 (2012)CrossRefGoogle Scholar
  9. 9.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)Google Scholar
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  11. 11.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)Google Scholar
  12. 12.
    Huang, C.H., Xiao, W.T., Chang, L.J., Tsai, W.T., Liu, W.M.: Automatic tissue segmentation by deep learning: from colorectal polyps in colonoscopy to abdominal organs in CT exam. In: 2018 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2018)Google Scholar
  13. 13.
    Huang, D., Lai, J.H., Wang, C.D., Yuen, P.C.: Ensembling over-segmentations: from weak evidence to strong segmentation. Neurocomputing 207, 416–427 (2016)CrossRefGoogle Scholar
  14. 14.
    Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)Google Scholar
  15. 15.
    Kang, J., Gwak, J.: Ensemble of instance segmentation models for polyp segmentation in colonoscopy images. IEEE Access 7, 26440–26447 (2019)CrossRefGoogle Scholar
  16. 16.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  17. 17.
    Li, Q., et al.: Colorectal polyp segmentation using a fully convolutional neural network. In: 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–5. IEEE (2017)Google Scholar
  18. 18.
    Lu, S., Lu, Z., Zhang, Y.D.: Pathological brain detection based on alexnet and transfer learning. J. Comput. Sci. 30, 41–47 (2019)CrossRefGoogle Scholar
  19. 19.
    Nguyen, Q., Lee, S.W.: Colorectal segmentation using multiple encoder-decoder network in colonoscopy images. In: 2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), pp. 208–211. IEEE (2018)Google Scholar
  20. 20.
    Qadir, H.A., Balasingham, I., Solhusvik, J., Bergsland, J., Aabakken, L., Shin, Y.: Improving automatic polyp detection using CNN by exploiting temporal dependency in colonoscopy video. IEEE J. Biomed. Health Inform. 24, 180–193 (2019)CrossRefGoogle Scholar
  21. 21.
    Qadir, H.A., Shin, Y., Solhusvik, J., Bergsland, J., Aabakken, L., Balasingham, I.: Polyp detection and segmentation using mask R-CNN: does a deeper feature extractor cnn always perform better? In: 2019 13th International Symposium on Medical Information and Communication Technology (ISMICT), pp. 1–6. IEEE (2019)Google Scholar
  22. 22.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  23. 23.
    Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)Google Scholar
  24. 24.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)Google Scholar
  25. 25.
    Vázquez, D., et al.: A benchmark for endoluminal scene segmentation of colonoscopy images. J. Healthcare Eng. 2017 (2017) Google Scholar
  26. 26.
    Wickstrøm, K., Kampffmeyer, M., Jenssen, R.: Uncertainty modeling and interpretability in convolutional neural networks for polyp segmentation. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of SaskatchewanSaskatoonCanada
  2. 2.Department of Neurology and NeurologicalUniversity of StanfordStanfordUSA
  3. 3.Department of Medical ImagingUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations