Advertisement

Salt Attack, Durability and Service Life of Concrete Structures

  • Wellington MazerEmail author
  • Alessandra Monique Weber
  • Carlos Alberto Brunhara
  • Juliana McCartney Fonseca
Chapter
  • 18 Downloads
Part of the Building Pathology and Rehabilitation book series (BUILDING, volume 12)

Abstract

The chapter in this book presents concepts on the durability of concrete structures directly relating to deterioration due to the attack of chloride and sulfate salts. The matter becomes necessary due to the aggressive conditions that the structure may be exposed to. In the case of sulfates, these can be present in soils, acid rain, sewage and the sea. Marine environments, on the other hand, are mainly responsible for the penetration of chlorides in concrete, another situation is the free chloride that can be present in the concrete mass and react when in large quantities. We covered the operation of chloride attack and sulfate attack, the calculation models and related life prediction and some recent studies to understand the behavior of buildings in the long term. This study becomes relevant for understanding the deterioration mechanisms that compromise durability.

Keywords

Sulphate attack Chloride ion Durability Service life Concrete structures 

References

  1. Aguiar JE (2014) Patologia e Durabilidade das Estruturas de Concreto. Notas de aula (Especialização em Construção Civil). Universidade Federal de Minas Gerais, Escola de Engenharia, Belo Horizonte, 298 pGoogle Scholar
  2. Al-Amoudi OSB (2002) Attack on plain and blended cements exposed to aggressive sulfate environments. Cem Concr Compos 24:305–316Google Scholar
  3. Alexander M, Beushausen H (2019) Durability, service life prediction, and modelling for reinforced concrete structures—review and critique. Cem Concr Res 122:17–29CrossRefGoogle Scholar
  4. Altmann F, Sickrt JU, Mechtcherine V, Kaliske M (2012) A fuzzy-probabilistic durability concept for strain-hardening cement-based composites (SHCC) exposed to chlorides. Part 1: Concept development. Cem Concr Compos 34:754–762Google Scholar
  5. American Concrete Institute (2001) Committee 201.2R. Guide to durable concrete. ACI Manual of Concrete Practice. Detroit, 42 pGoogle Scholar
  6. Andrade MC, Diez JM, Cruz Alonso M (1997) Mathematical modeling of a concrete surface “Skin Effect” on diffusion in chloride contaminated media. Adv Cem Based Mater 6:39–44CrossRefGoogle Scholar
  7. Andrade C, Prieto M, Tanner P, Tavares F, D’andrea R (2013) Testing and modelling chloride penetration into concrete. Construct Build Mater 93:9–18Google Scholar
  8. Anoop MB, Rao KB, Rao TVSRA (2002) Application of fuzzy sets for estimating service life of reinforced concrete structural members in corrosive environments. Eng StructGoogle Scholar
  9. Anoop MB, Raghuprasad BK (2012) A refined methodology for durability-based service life estimation of reinforced concrete structural elements considering fuzzy and random uncertainties. Comput Aided Civil Infrastruct Eng 27:170–186CrossRefGoogle Scholar
  10. Associação Brasileira de Normas Técnicas (2006) ABNT NBR 12655: Concreto de Cimento Portland – Preparo, Controle e Recebimento - Procedimento. Rio de JaneiroGoogle Scholar
  11. Bastidas-Arteaga E, Chateauneuf A, Sanchez-Silva M, Bressolette P, Schoefs F (2011) A comprehensive probabilistic model for chloride ingress in unsaturated concrete. Eng Struct 33:720–730CrossRefGoogle Scholar
  12. Bouteiller V, Marie-Victoire E, Cremona C (2016) Mathematical relation of steel thickness loss with time related to reinforced concrete contaminated by chlorides. Constr Build Mater 124:764–775CrossRefGoogle Scholar
  13. Campos A, López CM, Aguado A (2016) Diffusion–reaction model for the internal sulfate attack in concrete. Constr Build Mater 102:531–540CrossRefGoogle Scholar
  14. Castro-Borges P, Balancán-Zapata M, López-González A (2013) Analysis of tools to evaluate chloride threshold for corrosion onset of reinforced concrete in tropical marine environment of Yucatán, México. J Chem 1–8Google Scholar
  15. Cefis N, Comi C (2017) Chemo-mechanical modelling of the external sulfate attack in concrete. Cem Concr Res 93:57–70CrossRefGoogle Scholar
  16. Costa RM (2004) Análise de Propriedades Mecânicas do Concreto Deteriorado Pela Ação de Sulfato Mediante Utilização do UPV. Tese de Doutorado em Engenharia de Estruturas - Escola de Engenharia da Universidade Federal de Minas GeraisGoogle Scholar
  17. Drimalas T, Clement JC, Folliard KJ, Dhole R, Thomas MDA (2011) Technical Report 0-4889-1. Laboratory and Field Evaluations of External Sulfate Attack in Concrete. Center for Transportation Research, Austin, 190 pGoogle Scholar
  18. Félix EF et al (2018) Análise da vida útil de estruturas de concreto armado sob corrosão uniforme por meio de um modelo com RNA acoplado ao MEF. Revista de la Asociación Latinoamericana de Control de Calidad, Patología y Recuperación de la Construcción-ALCONPAT 8(1):1–15Google Scholar
  19. Feng P, Liu J, She W, Hong J (2018) A model investigation of the mechanisms of external sulfate attack on Portland cement binders. Constr Build Mater 175:629–642CrossRefGoogle Scholar
  20. FIB, Model code for service life design, Switzerland, fib bulletin 34, 2006Google Scholar
  21. Guzzo G (2018) Avaliação do comportamento do concreto convencional e do concreto de ultra alto desempenho frente à contaminação por cloretos. Trabalho de Conclusão de Curso, UTFPR, CuritibaGoogle Scholar
  22. Johnson SM (1969) Dégradation, entretien et reparation des ouvrages du genie civil, Eyrolles, 1a. edição, ParisGoogle Scholar
  23. Kropp J, Hilsdorf HK (1955) Performance criteria for concrete durability. Rilem Report 12, LondonGoogle Scholar
  24. Kuosa H, Ferreira RM, Holt E, Leivo M, Vesikari E (2013) Effect of coupled deterioration by freeze-thaw, carbonation and chlorides on concrete service life. Cem Concr Compos 47:32–40CrossRefGoogle Scholar
  25. Lee ST, Lee SH (2007) Sulfate attack and the role of cement compositions. J Korean Ceram Soc 44(9):465–470Google Scholar
  26. Liu Z, Deng D, De Schutter G, Yu Z (2013) The effect of MgSO4 on thaumasite formation. Cem Concr Compos 35:102–108Google Scholar
  27. Liang M, Lin S (2003) Modeling the transport f multiple corrosive chemicals in concrete structures: synergetic effect study. Cem Concr Res 33:1917–1924CrossRefGoogle Scholar
  28. Lorente S, Yssorche-Cubaynes MP, Auger J (2011) Sulfate transfer through concrete: migration and diffusion results. Cement Concr Compos 33:735–741CrossRefGoogle Scholar
  29. Martin-Pérez B, Zibara H, Hooton RD, Thomas MDA (2000) A study of the effect of chloride binding on service life prediction. Cem Concr Res 30:1215–1223CrossRefGoogle Scholar
  30. Mazer W (2010) Metodologia para a previsão da penetração de íons cloretos em estruturas de concreto armado utilizando a Lógica Difusa. Tese de doutorado, ITA, São José dos Campos, SPGoogle Scholar
  31. Mazer W, Lima MG, Medeiros-Junior RA (2017) Fuzzy logic for estimating chloride diffusion in concrete. Struct BuildGoogle Scholar
  32. Mazer W, Araújo JM, Medeiros A, Weber AM (2019) Evaluation of sulfate ions in degrading armed concrete structures of a sewage treatment station: case study. J Build Pathol RehabilGoogle Scholar
  33. Medeiros MHF, Andrade JJO, Helene P (2011) Durabilidade e vida útil das estruturas de concreto. Concreto: ciência e tecnologia 1:773–808Google Scholar
  34. Medeiros-Junior RA, Lima MG, Brito PC, Medeiros MHF (2015) Chloride penetration into concrete in an offshore platform—Analysis of exposure conditions. Ocean Eng 103:78–87Google Scholar
  35. Mehta K (1982) Durability of concrete in marine environment—a review. In: Performance of concrete in marine environment, ACI, pp 1–20Google Scholar
  36. Mehta PK, Monteiro JM (2008) Concreto: estrutura, propriedades e materiais. 2nd edn. IBRACON. São PauloGoogle Scholar
  37. Mohammen TU, Hamada H (2003) Relationship between free chloride and total chloride contents in concrete. Cem Concr Res 33:1487–1490CrossRefGoogle Scholar
  38. Nogueira CG, Leonel ED (2013) Probabilistic models applied to safety assessment of reinforced concrete structures subject to chloride ingress. Eng Fail Anal 31:76–89CrossRefGoogle Scholar
  39. Otieno M, Beushausen H, Alexander M (2016) Chloride-induced corrosion of steel in cracked concrete—Part I: Experimental studies under accelerated and natural marine environments. Cem Concr Res 79:373–385CrossRefGoogle Scholar
  40. Petcherdchoo A (2013) Time dependent models of apparent diffusion coefficient and surface chloride for chloride transport in fly ash concrete. Constr Build Mater 38:497–507CrossRefGoogle Scholar
  41. Piasta W, Marczewska J, Jaworska M (2014) Some aspects and mechanisms of sulfate attack. Struct Environ 6:19–24Google Scholar
  42. Pradelle S, Thiéry M, Baroghel-Bouny V (2017) Sensitivity analysis of chloride ingress models: case of concretes immersed in seawater. Constr Build Mater 136:44–56CrossRefGoogle Scholar
  43. Rheinheimer B, Khoe SS (2013) Ataque por Sulfatos em Estações de Tratamento de Efluentes. Trabalho de Conclusão de Curso (Graduação) – Curso Superior de Engenharia Civil. Universidade Federal do Paraná, Curitiba, BrasilGoogle Scholar
  44. Saetta A et al (1993) Analysis of chloride diffusion into partially saturated concrete. ACI Mater J 90(5):441–451Google Scholar
  45. Safehian M, Ramezanianpour AA (2013) Assessment of service life models for determination of chloride penetration into silica fume concrete in the severe marine environmental condition. Constr Build Mater 48:287–294CrossRefGoogle Scholar
  46. Schiavini DN (2018) Análise de diferentes tipos de cimento na resistência ao ataque por sulfatos. Trabalho de Conclusão de Curso, UTFPR, CuritibaGoogle Scholar
  47. Skalny J, Marchand J, Odler I (2002) Sulfate attack on concrete. Son Press 1ª Ed. London and New YorkGoogle Scholar
  48. Sun YM, Liang MT, Chang TP (2012) Time/depth dependent diffusion and chemical reaction model of chloride transportation in concrete. Appl Math Model 36:1114–1122MathSciNetCrossRefGoogle Scholar
  49. Sun C, Chen J, Zhu J, Zang M, Ye J (2013) A new diffusion model of sulfate ions in concrete. Constr Build Mater 39:39–45CrossRefGoogle Scholar
  50. Val DV, Trapper PA (2008) Probabilistic evaluation of initiation time of chloride induced corrosion. Reliabil Eng Syst Saf 93:364–372CrossRefGoogle Scholar
  51. Valipour M, Shekarchi M, Ghods P (2014) Comparative studies of experimental and numerical techniques in measurement of corrosion rate and time-to-corrosion-initiation of rebar in concrete in marine environments. Cement Concr Compos 48:98–107CrossRefGoogle Scholar
  52. Zhu W, François R, Fang Q, Zhang D (2016) Influence of long-term chloride diffusion in concrete and the resulting corrosion of reinforcement on the serviceability of RC beams. Cement Concr Compos 71:144–152CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wellington Mazer
    • 1
    Email author
  • Alessandra Monique Weber
    • 1
  • Carlos Alberto Brunhara
    • 1
  • Juliana McCartney Fonseca
    • 1
  1. 1.Federal University of Technology-ParanáApucaranaBrazil

Personalised recommendations