Advertisement

Mechanism of Population Inversion in N\(_2{^{+}}\)

  • Youyuan Zhang
  • Erik Lötstedt
  • Kaoru YamanouchiEmail author
Chapter
  • 29 Downloads
Part of the Topics in Applied Physics book series (TAP, volume 136)

Abstract

When intense femtosecond laser pulses are focused in air, unidirectional and coherent radiation called air-lasing is generated, originating from the population inversion processes between an electronically excited state and the electronic ground state of N\(_2\) and N\(_2{^{+}}\). In 2015, it was shown experimentally that the air-lasing at 391 nm, corresponding to the \(\mathrm{B}{}^2\Sigma _\mathrm{u}{^+}(v = 0)-\mathrm{X}{}^2\Sigma _\mathrm{g}{^+}(v = 0)\) emission of N\(_2{^{+}}\), is generated in an sub-10 fs near-IR laser field (Xu et al, Nat Commun 6:8347, 2015 [6]). The behavior that N\(_2{^{+}}\) generated in the pulse is exposed to the intense laser field immediately after its birth, is considered critical in leading to the population inversion between the B and X states. This chapter includes the demonstrations that the sudden exposure to an intense laser field could result in efficient population transition in a two-level system at off-resonance (Zhang et al, J Phys B: At Mol Opt Phys 50:185603, 2017 [32]), and that population inversion can be achieved in N\(_2{^{+}}\) by using sudden turn-on pulse (Zhang et al, J Phys B: At Mol Opt Phys 52:055401, 2019 [33]). This scenario of the population transfer to the excited state is expected to be universal and can be applied to an interpretation of population inversion of any kind of atomic and molecular ions created in a pulsed intense laser field.

Notes

Acknowledgements

This research was supported by JSPS KAKENHI grants no. JP15K17805, no. JP24245003, and no. JP15H05696.

References

  1. 1.
    V. Kocharovsky, S. Cameron, K. Lehmann, R. Lucht, R. Miles, Y. Rostovtsev, W. Warren, G.R. Welch, M.O. Scully, Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere. Proc. Nat. Acad. Sci. 102, 7806 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    P.R. Hemmer, R.B. Miles, P. Polynkin, T. Siebert, A.V. Sokolov, P. Sprangle, M.O. Scully, Standoff spectroscopy via remote generation of a backward-propagating laser beam. Proc. Natl. Acad. Sci. U S A 108, 3130 (2011) 21297033 [pmid]Google Scholar
  3. 3.
    Q. Luo, W. Liu, S. Chin, Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B 76, 337 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, High-gain backward lasing in air. Science 331, 442 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S.L. Chin, Y. Cheng, Z. Xu, High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 84, 051802 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    H. Xu, E. Lötstedt, A. Iwasaki, K. Yamanouchi, Sub-10-fs population inversion in N\(_2{^+}\) in air lasing through multiple state coupling. Nat. Commun. 6, 8347 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    A. Zhang, Q. Liang, M. Lei, L. Yuan, Y. Liu, Z. Fan, X. Zhang, S. Zhuang, C. Wu, Q. Gong, H. Jiang, Coherent modulation of superradiance from nitrogen ions pumped with femtosecond pulses. Opt. Express 27, 12638 (2019)ADSCrossRefGoogle Scholar
  8. 8.
    J. Chen, J. Yao, H. Zhang, Z. Liu, B. Xu, W. Chu, L. Qiao, Z. Wang, J. Fatome, O. Faucher, C. Wu, Y. Cheng, Electronic-coherence-mediated molecular nitrogen-ion lasing in a strong laser field. Phys. Rev. A 100, 031402 (2019)ADSCrossRefGoogle Scholar
  9. 9.
    H. Xie, Q. Zhang, G. Li, X. Wang, L. Wang, Z. Chen, H. Lei, Z. Zhao, Vibrational population transfer between electronic states of \({\rm N}_{2}{^{+}}\) in polarization-modulated intense laser fields. Phys. Rev. A 100, 053419 (2019)ADSCrossRefGoogle Scholar
  10. 10.
    G. Li, C. Jing, B. Zeng, H. Xie, J. Yao, W. Chu, J. Ni, H. Zhang, H. Xu, Y. Cheng, Z. Xu, Signature of superradiance from a nitrogen-gas plasma channel produced by strong-field ionization. Phys. Rev. A 89, 033833 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, A. Mysyrowicz, Recollision-induced superradiance of ionized nitrogen molecules. Phys. Rev. Lett. 115, 133203 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    X. Zhong, Z. Miao, L. Zhang, Q. Liang, M. Lei, H. Jiang, Y. Liu, Q. Gong, C. Wu, Vibrational and electronic excitation of ionized nitrogen molecules in intense laser fields. Phys. Rev. A 96, 043422 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    X. Zhong, Z. Miao, L. Zhang, H. Jiang, Y. Liu, Q. Gong, C. Wu, Optimizing the 391-nm lasing intensity from ionized nitrogen molecules in 800-nm femtosecond laser fields. Phys. Rev. A 97, 033409 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    J. Ni, W. Chu, C. Jing, H. Zhang, B. Zeng, J. Yao, G. Li, H. Xie, C. Zhang, H. Xu, S.-L. Chin, Y. Cheng, Z. Xu, Identification of the physical mechanism of generation of coherent \({\rm N}_{2}{^{+}}\) emissions in air by femtosecond laser excitation. Opt. Express 21, 8746 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    J. Yao, S. Jiang, W. Chu, B. Zeng, C. Wu, R. Lu, Z. Li, H. Xie, G. Li, C. Yu, Z. Wang, H. Jiang, Q. Gong, Y. Cheng, Population redistribution among multiple electronic states of molecular nitrogen ions in strong laser fields. Phys. Rev. Lett. 116, 143007 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    V.T. Tikhonchuk, J.-F. Tremblay-Bugeaud, Y. Liu, A. Houard, A. Mysyrowicz, Excitation of nitrogen molecular ions in a strong laser field by electron recollisions. Euro. Phys. J. D 71, 292 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    M. Britton, P. Laferrière, D.H. Ko, Z. Li, F. Kong, G. Brown, A. Naumov, C. Zhang, L. Arissian, P.B. Corkum, Testing the role of recollision in \({\rm N}_{2}{^{+}}\) air lasing. Phys. Rev. Lett. 120, 133208 (2018)ADSCrossRefGoogle Scholar
  18. 18.
    H. Li, Q. Song, J. Yao, Z. Liu, J. Chen, B. Xu, K. Lin, J. Qiang, B. He, H. Xu, Y. Cheng, H. Zeng, J. Wu, Air lasing from singly ionized \({\rm N}_{2}\) driven by bicircular two-color fields. Phys. Rev. A 99, 053413 (2019)ADSCrossRefGoogle Scholar
  19. 19.
    A. Zhang, M. Lei, J. Gao, C. Wu, Q. Gong, H. Jiang, Subfemtosecond-resolved modulation of superfluorescence from ionized nitrogen molecules by 800-nm femtosecond laser pulses. Opt. Express 27, 14922 (2019)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Wan, B. Xu, J. Yao, J. Chen, Z. Liu, F. Zhang, W. Chu, Y. Cheng, Polarization ellipticity dependence of N\(_{2}{^+}\) air lasing: the role of coupling between the ground state and a photo-excited intermediate state. J. Opt. Soc. Am. B 36, G57 (2019)CrossRefGoogle Scholar
  21. 21.
    A. Mysyrowicz, R. Danylo, A. Houard, V. Tikhonchuk, X. Zhang, Z. Fan, Q. Liang, S. Zhuang, L. Yuan, Y. Liu, Lasing without population inversion in N\(_{2}{^+}\). APL Photon. 4, 110807 (2019)ADSCrossRefGoogle Scholar
  22. 22.
    H. Xu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, Alignment-dependent population inversion in \({\rm N}_{2}{^{+}}\) in intense few-cycle laser fields. Phys. Rev. A 96, 041401 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    H. Li, M. Hou, H. Zang, Y. Fu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, H. Xu, Significant enhancement of \({\rm N}_{2}{^{+}}\) lasing by polarization-modulated ultrashort laser pulses. Phys. Rev. Lett. 122, 013202 (2019)ADSCrossRefGoogle Scholar
  24. 24.
    H. Zhang, C. Jing, J. Yao, G. Li, B. Zeng, W. Chu, J. Ni, X. Hongqiang, H. Xu, S. Leang Chin, K. Yamanouchi, H. Sun, Z. Xu, Rotational coherence encoded in an “air-laser” spectrum of nitrogen molecular ions in an intense laser field. Phys. Rev. X 3 (2013)Google Scholar
  25. 25.
    B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, Y. Cheng, Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy. Phys. Rev. A 89, 042508 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    H. Xie, B. Zeng, G. Li, W. Chu, H. Zhang, C. Jing, J. Yao, J. Ni, Z. Wang, Z. Li, Y. Cheng, Coupling of \({\rm N}_{2}{^{+}}\) rotational states in an air laser from tunnel-ionized nitrogen molecules. Phys. Rev. A 90, 042504 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    M. Lei, C. Wu, A. Zhang, Q. Gong, H. Jiang, Population inversion in the rotational levels of the superradiant N\(_2{^+}\) pumped by femtosecond laser pulses. Opt. Express 25, 4535 (2017)ADSCrossRefGoogle Scholar
  28. 28.
    A. Azarm, P. Corkum, P. Polynkin, Optical gain in rotationally excited nitrogen molecular ions. Phys. Rev. A 96, 051401 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    M. Britton, M. Lytova, P. Laferrière, P. Peng, F. Morales, D.H. Ko, M. Richter, P. Polynkin, D.M. Villeneuve, C. Zhang, M. Ivanov, M. Spanner, L. Arissian, P.B. Corkum, Short- and long-term gain dynamics in \({\rm N}_{2}{^{+}}\) air lasing. Phys. Rev. A 100, 013406 (2019)ADSCrossRefGoogle Scholar
  30. 30.
    S.R. Langhoff, C.W. Bauschlicher, H. Partridge, Theoretical study of the N\(_2{^{+}}\) Meinel system. J. Chem. Phys. 87, 4716 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    S.R. Langhoff, C.W. Bauschlicher Jr., Theoretical study of the first and second negative systems of N\(_2{^{+}}\). J. Chem. Phys. 88, 329 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Zhang, E. Lötstedt, K. Yamanouchi, Population inversion in a strongly driven two-level system at far-off resonance. J. Phys. B: At. Mol. Opt. Phys. 50, 185603 (2017)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Zhang, E. Lötstedt, K. Yamanouchi, Mechanism of population inversion in laser-driven \({\rm N}_{2}{^{+}}\). J. Phys. B: At. Mol. Opt. Phys. 52, 055401 (2019)ADSCrossRefGoogle Scholar
  34. 34.
    W. Zheng, Z. Miao, L. Zhang, Y. Wang, C. Dai, A. Zhang, H. Jiang, Q. Gong, C. Wu, Enhanced coherent emission from ionized nitrogen molecules by femtosecond laser pulses. J. Phys. Chem. Lett. 6598 (2019)Google Scholar
  35. 35.
    S. Tamar, Rotational excitation and molecular alignment in intense laser fields. J. Chem. Phys. 103, 7887 (1995)CrossRefGoogle Scholar
  36. 36.
    L. Matsuoka, E. Segawa, Localization in rotational excitation of diatomic molecules induced by a train of optical pulses. Interdisc. Inf. Sci. 23, 51 (2017)MathSciNetGoogle Scholar
  37. 37.
    A. Maan, A. Tyagi, V. Prasad, Rotational excitation of diatomic molecule: time dependent study. Acta Phys. Pol., A 133, 1266 (2018)CrossRefGoogle Scholar
  38. 38.
    T. Szidarovszky, M. Jono, K. Yamanouchi, LIMAO: cross-platform software for simulating laser-induced alignment and orientation dynamics of linear-, symmetric- and asymmetric tops. Comput. Phys. Commun. 228, 219 (2018)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    T. Ando, E. Lötstedt, A. Iwasaki, H. Li, Y. Fu, S. Wang, H. Xu, K. Yamanouchi, Rotational, vibrational, and electronic modulations in N\(_{2}{^{+}}\) lasing at 391 nm: evidence of coherent \(B^{2}{\Sigma _{u}^{+}}-X^{2}{\Sigma _{g}^{+}}-A^{2} \Pi _{u}\) Coupling. Phys. Rev. Lett. 123, 203201 (2019)Google Scholar
  40. 40.
    M.E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, NY, 1957)CrossRefGoogle Scholar
  41. 41.
    J.M. Brown, A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge Molecular Science (Cambridge University Press, Cambridge, 2003)CrossRefGoogle Scholar
  42. 42.
    S.-I. Chu, D.A. Telnov, Beyond the Floquet theorem: generalized Floquet formalisms and quasienergy methods for atomic and molecular multiphoton processes in intense laser fields. Phys. Rep. 390, 1 (2004)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    X. Li, J. Paldus, Full potential energy curve for N\(_2\) by the induced multireference coupled-cluster method. J. Chem. Phys. 129, 054104 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    S.-F. Zhao, C. Jin, A.-T. Le, T.F. Jiang, C.D. Lin, Determination of structure parameters in strong-field tunneling ionization theory of molecules. Phys. Rev. A 81, 033423 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Youyuan Zhang
    • 1
  • Erik Lötstedt
    • 1
  • Kaoru Yamanouchi
    • 1
    Email author
  1. 1.Department of ChemistrySchool of Science, The University of TokyoTokyoJapan

Personalised recommendations