Decomposition Method for Calculations on Intuitionistic Fuzzy Numbers

  • Marek LandowskiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1081)


In this paper the definition of a multidimensional trapezoidal horizontal intuitionistic fuzzy number (TrHIFN) and multidimensional decomposition method (TrHIFN arithmetic) for calculations on TrHIFNs are presented. Till now, for intuitionistic fuzzy numbers (IFN) only low-dimensional approaches have been considered. The proposed arithmetic is based on multidimensional rdm interval arithmetic (RDMIA) and its extension horizontal fuzzy arithmetic (HFA). A direct result obtained with TrHIFN arithmetic is described in multidimensional space as a granule of information about the solution. From the direct solution, IFN as an indicator (a span) of the direct solution can be calculated. Moreover, in the paper the examples with basic operations on TrHIFN and the solution of intuitionistic fuzzy linear system (IFLS) are considered.


Intuitionistic fuzzy number Intuitionistic fuzzy arithmetic Multidimensional arithmetic Decomposition method RDM arithmetic 


  1. 1.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefGoogle Scholar
  2. 2.
    Atanassov, K.T.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 31, 343–349 (1989)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33, 37–45 (1989)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Banerjee, S., Biswas, S., Roy, T.K.: Intuitionistic fuzzy linear system. Adv. Fuzzy Math. 12(3), 475–487 (2017)Google Scholar
  6. 6.
    Dong, W., Shah, H.C.: Vertex method for computing functions of fuzzy variables. Fuzzy Sets Syst. 24(1), 65–78 (1987)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Friedman, M., Ming, M., Kandel, A.: Fuzzy linear systems. Fuzzy Sets Syst. 96, 201–209 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  9. 9.
    Landowski, M.: Method with horizontal fuzzy numbers for solving real fuzzy linear systems. Soft Comput. 23(12), 1–13 (2018). Scholar
  10. 10.
    Li, D.: Extension principles for interval-valued intuitionistic fuzzy sets and algebraic operations. Fuzzy Optim. Decis. Mak. 10, 45–58 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Piegat, A., Landowski, M.: Is the conventional interval arithmetic correct? J. Theor. Appl. Comput. Sci. 6(2), 27–44 (2012)Google Scholar
  12. 12.
    Piegat, A., Landowski, M.: Two interpretations of multidimensional RDM interval arithmetic - multiplication and division. Int. J. Fuzzy Syst. 15(4), 488–496 (2013)MathSciNetGoogle Scholar
  13. 13.
    Piegat, A., Landowski, M.: Horizontal membership function and examples of its applications. Int. J. Fuzzy Syst. 17(1), 22–30 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Piegat, A., Landowski, M.: Fuzzy arithmetic type 1 with horizontal membership functions. In: Kreinovich, V. (ed.) Uncertainty Modeling. Studies in Computational Intelligence, vol. 683, pp. 233–250. Springer, Cham (2017)CrossRefGoogle Scholar
  15. 15.
    Piegat, A., Landowski, M.: Is an interval the right result of arithmetic operations on intervals? Int. J. Appl. Math. Comput. Sci. 27(3), 575–590 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Piegat, A., Landowski, M.: Is fuzzy number the right result of arithmetic operations on fuzzy numbers? In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017. EUSFLAT 2017, IWIFSGN 2017, Advances in Intelligent Systems and Computing, vol. 643, pp. 181–194. Springer, Cham (2018)CrossRefGoogle Scholar
  17. 17.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  18. 18.
    Zadeh, L.A.: The concept of a linguistic variable and its applications in approximate reasoning. Inf. Sci. 8, 199–251 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Department of Mathematical MethodsMaritime University of SzczecinSzczecinPoland

Personalised recommendations