Advertisement

How to Generate a Level Set from a Family of Confidence Intervals

  • Michał K. Urbański
  • Kinga M. Wójcicka
  • Paweł M. WójcickiEmail author
Conference paper
  • 6 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1081)

Abstract

The aim of this paper is to describe a shifted family of confidence intervals and to examine under which conditions the family is a level set. This conditions deal with the two functions of possibility level that parameterize the confidence interval. One of these functions describes the relation between probability and possibility levels, and the second one describes the position of the confidence interval centre.

Keywords

Fuzzy number Level set Confidence interval Probability to possibility transformation 

References

  1. 1.
    Bzowski, A., Urbański, M.K.: A note on Nguyen-Fullér-Keresztfalvi theorem and Zadeh’s extension principle. Fuzzy Sets Syst. 213, 91–101 (2013)CrossRefGoogle Scholar
  2. 2.
    Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information, pp. xii+355. Prentice Hall, Inc., Englewood Cliffs (1988) Google Scholar
  3. 3.
    Walker, C.L., Walker, E.A., Yager, R.R.: Some comments on level sets of fuzzy sets. In: IEEE International Conference on Fuzzy Systems, June 2008, pp.1227–1230 (2008)Google Scholar
  4. 4.
    Ramik, J., Milan, V.: Intuitionistic fuzzy linear programming and duality: a level sets approach. Fuzzy Optim. Decis. Mak. 15(4), 457–489 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dubois, D., Foulloy, L., Mauris, G., Prade, H.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliab. Comput. 10(4), 273–297 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mauris, G., Lasserre, V., Foully, L.: A fuzzy approach for expression of uncertainty in measurement. Measurement 29, 165–177 (2001)CrossRefGoogle Scholar
  7. 7.
    Dubois, D., Prade, H.: Fuzzy Set and Systems: Theory and Applications. Academic Press, Inc., New York (1980)zbMATHGoogle Scholar
  8. 8.
    Negoita, C.V., Ralescu, D.A.: Representation theorems for fuzzy concepts. Kybernetes 4, 169–174 (1975)CrossRefGoogle Scholar
  9. 9.
    UrbańskiUrbański, U., Wa̧sowski, J.: Fuzzy approach to the theory of measurement inexactness. Measurement 34, 61–74 (2003)Google Scholar
  10. 10.
    Urbański, M.K., Wa̧sowski, J.: Fuzzy measurement theory. Measurement 41, 391–402 (2008)CrossRefGoogle Scholar
  11. 11.
    Urbański, M.K., Bzowski, A.: Error analysis using fuzzy arithmetic based on T-norm. In: 12th IMEKO TC1 and TC7 Joint Symposium Man Science Measurement, l’Universitde Savoie, 3–5 September, Annecy, France (2008) Google Scholar
  12. 12.
    Guide to the Expression of Uncertainty in Measurement, ISO (2008). https://www.bipm.org/en/publications/guides/gum.html

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  • Michał K. Urbański
    • 1
  • Kinga M. Wójcicka
    • 1
  • Paweł M. Wójcicki
    • 2
    Email author
  1. 1.Faculty of PhysicsWarsaw University of TechnologyWarsawPoland
  2. 2.Faculty of Mathematics and Information ScienceWarsaw University of TechnologyWarsawPoland

Personalised recommendations