Applications of Ordered Fuzzy Numbers in Medicine

  • Anna ChwastykEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1081)


In recent years, fuzzy set theory and Fuzzy Logic are applied successfully in medical expert systems. The notion of ordered fuzzy number (OFN) was formulated as an extended model of fuzzy numbers, to eliminate some of their weaknesses. We propose description of medical test results with use of OFNs which can allow to include additional information about patients such us results of previous tests. The application of the ordered fuzzy inference method are illustrated by the example of the relationship between high blood pressure and stroke risk.


Fuzzy numbers Ordered fuzzy numbers Expert system Stroke prevention 


  1. 1.
    Anindito, B.S.A., Pardamean, B., Christian, R.: Expert-system based medical stroke prevention. J. Comput. Sci. 9(27), 1099–1105 (2013). Scholar
  2. 2.
    Bednarek, T., Kosiński, W., Wȩgrzyn-Wolska, K.: On orientation sensitive defuzzification functionals. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds.) Artificial Intelligence and Soft Computing, Lecture Notes in Computer Science, vol. 8468, pp. 653–664. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Buckley, J.J., Eslami, E.: An introduction to fuzzy logic and fuzzy sets. In: Advances in Soft Computing, Physica-Verlag, Springer, Heidelberg (2002).
  4. 4.
    Chwastyk, A., Kosiński, W.: Fuzzy calculus with applications. Math. Applicanda 41(1), 47–96 (2013). Scholar
  5. 5.
    Dyken, M.L.: Stroke risk factors. In: Norris, J.W., Hachinski, V.C. (eds.) Prevention of Stroke, pp. 83–101. Springer, New York (1991).
  6. 6.
    Gürsen, G.: Healthcare, uncertainty, and fuzzy logic. Digital Med. 2(3), 101–112 (2016). Scholar
  7. 7.
    Kosiński, W.: On defuzzyfication of ordered fuzzy numbers. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing - ICAISC 2004 (Zakopane, 2004). Lecture Notes on Artificial Intelligence, vol. 3070, pp. 326–331. Springer, Berlin (2004)CrossRefGoogle Scholar
  8. 8.
    Kosiński, W., Piasecki, W., Wilczyńska-Sztyma, D.: On fuzzy rules and defuzzification functionals for Ordered Fuzzy Numbers. In: Burczyñski, T., Cholewa, W., Moczulski, W., (eds.), Proceedings of AI-Meth 2009 Conference, November 2009, pp. 161–178. AI-METH Series, Gliwice (2009)Google Scholar
  9. 9.
    Kosiński, W., Prokopowicz, P., Ślȩżak, D.: Fuzzy numbers with algebraic operations: algorithmic approach. In: Kłopotek, M., Wierzchoñ, S.T, Michalewicz, M. (ed.), Intelligent Information Systems 2002, Proceeding IIS 2002, Sopot, 3–6 June 2002, pp. 311–320. Physica Verlag (2002)Google Scholar
  10. 10.
    Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Artif. Intell. Med. 16(2), 121–128 (1999)CrossRefGoogle Scholar
  11. 11.
    Mishra, N., Jha, P.: A review on the applications of fuzzy expert system for disease diagnosis. Int. J. Adv. Res. Eng. Appl. Sci. 3(12), 28–43 (2014)Google Scholar
  12. 12.
    Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩżak, D.: Theory and Applications of Ordered Fuzzy Numbers, Studies in Fuzziness and Soft Computing, vol. 356 (2017).
  13. 13.
    Prokopowicz, P., Processing the direction with ordered fuzzy numbers. In: Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł.,Ślȩżak, D. (eds.) Theory and Applications of Ordered Fuzzy Numbers, Studies in Fuzziness and Soft Computing, vol. 356, pp. 89–106 (2017)Google Scholar
  14. 14.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965). Scholar
  15. 15.
    The internet Stroke Center. Accessed 10 Aug 2018

Copyright information

© Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Opole University of TechnologyOpolePoland

Personalised recommendations