Advertisement

A Match Made on Earth: On the Applicability of Mathematics in Physics

  • Arezoo IslamiEmail author
  • Harald A. Wiltsche
Chapter
  • 12 Downloads
Part of the Synthese Library book series (SYLI, volume 429)

Abstract

Anyone interested in understanding the nature of modern physics will at some point encounter a problem that was popularized in the 1960s by the physicist Eugene Wigner: Why is it that mathematics is so effective and useful for describing, explaining and predicting the kinds of phenomena we are concerned with in the sciences? In this chapter, we will propose a phenomenological solution for this “problem” of the seemingly unreasonable effectiveness of mathematics in the physical sciences. In our view, the “problem” can only be solved—or made to evaporate—if we shift our attention away from the why-question—Why can mathematics play the role it does in physics?—, and focus on the how-question instead. Our question, then, is this: How is mathematics actually used in the practice of modern physics?

References

  1. Bueno, O., & French, S. (2018). Applying mathematics. Immersion, inference, interpretation. Oxford: Oxford University Press.Google Scholar
  2. Cassirer, E. (1953). Substance and function, and Einstein’s theory of relativity. New York: Dover.Google Scholar
  3. Clavelin, M. (1974). The natural philosophy of Galileo. Essay on the origin and formation of classical mechanics. Cambridge: MIT Press.Google Scholar
  4. Colyvan, M. (2001). The miracle of applied mathematics. Synthese, 127, 265–78.CrossRefGoogle Scholar
  5. da Silva, J. J. (2017). Mathematics and its applications. A transcendental-idealist perspective. Cham: Springer.Google Scholar
  6. Dawid, R. (2013). String theory and the scientific method. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Derrida, J. (1989). Edmund Husserl’s origin of geometry: An introduction. Lincoln: University of Nebraska Press.Google Scholar
  8. Dirac, P. A. M. (1939). The relation between mathematics and physics. Proceedings of the Royal Society, 59, 122–129.Google Scholar
  9. Foucault, M. (1998). Aesthetics, method, and epistemology. New York: New Press.Google Scholar
  10. Galilei, G. (1954). Dialogues concerning two new sciences. New York: Dover.Google Scholar
  11. Galilei, G. (1967). Dialogue concerning the two chief world systems. Berkeley/Los Angeles: University of California Press.Google Scholar
  12. Gödel, K. (1983). Russell’s mathematical logic. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics (pp. 447–469). Cambridge: Cambridge University Press.Google Scholar
  13. Grattan-Guinness, I. (1990). Does the history of science treat the history of science? The case of mathematics. History of Science, 28, 149–173.CrossRefGoogle Scholar
  14. Gross, D. (1988). Physics and mathematics at the frontier. Proceedings of the National Academy of Science of the United States of America, 85, 8371–8375.Google Scholar
  15. Hilbert, D. (1992). Natur und mathematisches Erkennen. Basel: Birkhäuser.Google Scholar
  16. Hossenfelder, S. (2018). Lost in math. How beauty leads physics astray. New York: Basic Books.Google Scholar
  17. Husserl, E. (1970). The crisis of European sciences and transcendental phenomenology. An introduction to phenomenological philosophy. Evanston: Northwestern University Press.Google Scholar
  18. Islami, A. (2017). A match not made in heaven: On the applicability of mathematics in physics. Synthese, 194(12), 4839–4861.CrossRefGoogle Scholar
  19. Koertge, N. (1977). Galileo and the problem of accidents. Journal in the History of Ideas, 28(3), 389–408.CrossRefGoogle Scholar
  20. Kosso, P. (2003). Symmetry, objectivity, and design. In K. Brading & E. Castellani (Eds.), Symmetries in physics. Philosophical reflections (pp. 413–424). Cambridge University Press: Cambridge.CrossRefGoogle Scholar
  21. Koyré, A. (1978). Galileo studies. Hassocks: Harvester Press.Google Scholar
  22. Lesk, A. M. (2000). The unreasonable effectiveness of mathematics in molecular biology. The Mathematical Intelligencer, 22/2, 28–37.Google Scholar
  23. McAllister, J. (1996). The evidential status of thought experiments in science. Studies in History and Philosophy of Science, 27(2), 247–273.CrossRefGoogle Scholar
  24. McTighe, T. (1967). Galileo’s platonism: A reconsideration. In E. McMullin (Ed.), Galileo. Man of science (pp. 365–386). New York: Basic Books.Google Scholar
  25. Parker, R. K. (2017). The history between Koyré and Husserl. In J. A. Raffaele Pisano & D. Drozdova (Eds.), Hypotheses and perspectives in the history and philosophy of science. Homage to Alexandre Koyré 1892–1964 (pp. 243–275). Dordrecht: Springer.Google Scholar
  26. Penrose, R. (2004). The road to reality: A complete guide to the laws of the universe. London: Vintage Books.Google Scholar
  27. Redondi, P. (1998). From Galileo to Augustine. In P. Machamer (Ed.), The Cambridge companion to Galileo (pp. 175–210). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Segre, M. (1991). In the wake of Galileo. New Brunswick: Rutgers University Press.Google Scholar
  29. Smolin, L. (2006). The trouble with physics. Boston: Houghton Mifflin.Google Scholar
  30. Steiner, M. (1989). The application of mathematics to natural science. Journal of Philosophy, 86(9), 449–480.CrossRefGoogle Scholar
  31. Steiner, M. (1998). The applicability of mathematics as a philosophical problem. Cambridge: Harvard University Press.Google Scholar
  32. Tegmark, M. (2008). The mathematical universe. Foundations of Physics, 38(2), 101–150.CrossRefGoogle Scholar
  33. Velupillai, K. (2005). The unreasonable ineffectiveness of mathematics in economics. Cambridge Journal of Economics, 29, 849–872.CrossRefGoogle Scholar
  34. Weyl, H. (1948). Wissenschaft als symbolische Konstruktion des Menschen. Eranos-Jahrbuch, 16, 375–431.Google Scholar
  35. Weyl, H. (1949). Philosophy of mathematics and natural science. Princeton: Princeton University Press.CrossRefGoogle Scholar
  36. Wigner, E. (1960). The unreasonable effectiveness of mathematics in the natural sciences. Communications in Pure and Applied Mathematics, 13, 1–14.CrossRefGoogle Scholar
  37. Wiltsche, H. A. (2012). What is wrong with Husserl’s scientific anti-realism? Inquiry, 55(2), 105–130.CrossRefGoogle Scholar
  38. Wiltsche, H. A. (2016). Mechanics lost: Husserl’s Galileo and Ihde’s telescope. Husserl Studies, 33(2), 149–173.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhilosophySan Francisco State UniversitySan FranciscoUSA
  2. 2.Department of Culture and Society (IKOS)Linköping UniversityLinköpingSweden

Personalised recommendations