Features of Using Nonlinear Dynamics Method in Electrical Impedance Signals Analysis of the Ocular Blood Flow

  • A. A. Kiseleva
  • P. V. LuzhnovEmail author
  • E. N. Iomdina
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1211)


The article describes an approach to constructing an algorithm for qualitative and quantitative comparison of electrical impedance diagnostics signals using the nonlinear dynamics method. The biophysical factors for the electrical impedance diagnostics signal formation and their relationship with a variety of the developed algorithm parameters are presented. The method with the transpalpebral rheoophthalmography signal attractor reconstruction is considered. The optimal reconstruction parameters have been chosen to construct an attractor in the given coordinates space. It has been carried out the analysis of the reconstructed attractors mass centers position for the transpalpebral rheoophthalmography signals, on the basis of which the decision rule has been formulated for comparing and dividing the signals into groups. The results have been verified on electrical impedance signals of the eye blood flow. The application of the developed technique is shown on the example of transpalpebral rheoophthalmography signal analysis in patients with primary open-angle glaucoma.


Nonlinear dynamics Transpalpebral rheoophthalmography Blood flow Eye Glaucoma 


Conflict of Interest

The authors declare that they have no conflict of interest. The paper was supported by a grant from RFBR (No. 18-08-01192).


  1. 1.
    Lazarenko, V.I., Kornilovsky, I.M., Ilenkov, S.S., et al.: Our method of functional heography of eye. Vestn. oftalmol. 115(4), 33–37 (1999)Google Scholar
  2. 2.
    Lazarenko, V.I., Komarovskikh, E.N.: Results of the examination of hemodynamics of the eye and brain in patients with primary open-angle glaucoma. Vestn. oftalmol. 120(1), 32–36 (2004). Scholar
  3. 3.
    Luzhnov, P.V., Shamaev, D.M., Iomdina, E.N., et al.: Transpalpebral tetrapolar reoophtalmography in the assessment of parameters of the eye blood circulatory system. Vestn. Ross. Akad. Med. Nauk 70(3), 372–377 (2015). Scholar
  4. 4.
    Luzhnov, P.V., Shamaev, D.M., Iomdina, E.N., et al.: Using quantitative parameters of ocular blood filling with transpalpebral rheoophthalmography. IFMBE Proc. 65, 37–40 (2017). Scholar
  5. 5.
    Shamaev, D.M., Luzhnov, P.V., Iomdina, E.N.: Modeling of ocular and eyelid pulse blood filling in diagnosing using transpalpebral rheoophthalmography. IFMBE Proc. 65, 1000–1003 (2017). Scholar
  6. 6.
    Shamaev, D.M., Luzhnov, P.V., Iomdina, E.N.: Mathematical modeling of ocular pulse blood filling in rheoophthalmography. IFMBE Proc. 68(1), 495–498 (2018). Scholar
  7. 7.
    Luzhnov, P.V., Shamaev, D.M., Kiseleva, A.A., et al.: Using nonlinear dynamics for signal analysis in transpalpebral rheoophthalmography. Sovremennye tehnologii v medicine 10(3), 160–167 (2018). Scholar
  8. 8.
    Kiseleva, A.A., Luzhnov, P.V., Nikolaev, A.P., Iomdina, E.N., Kiseleva, O.A.: Nonlinear dynamics method in the impedance signals analysis of the eye blood flow of patients with glaucoma. In: Proceedings of 12th International Joint Conference on Biomedical Engineering Systems and Technologies BIODEVICES, vol. 1, pp. 75–80 (2019).
  9. 9.
    Kiseleva, A., Luzhnov, P., Dyachenko, A., Semenov, Y.: Rheography and spirography signal analysis by method of nonlinear dynamics. In: Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies BIODEVICES, vol. 1, pp. 136–140 (2018).
  10. 10.
    Betelin, V.B., Eskov, V.M., Galkin, V.A., et al.: Stochastic volatility in the dynamics of complex homeostatic systems. Dokl. Math. 95, 92 (2017). Scholar
  11. 11.
    Elhaj, F., Salim, N., Harris, A., Swee, T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Programs Biomed. 127, 52–63 (2016). Scholar
  12. 12.
    Akar, S.A., Kara, S., Agambayev, S., Bilgic, V.: Nonlinear analysis of EEG in major depression with fractal dimensions. In: 37th Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, pp. 7410–7413 (2015).
  13. 13.
    Gracia, J., et al.: Nonlinear local projection filter for impedance pneumography. EMBEC/NBC -2017. IP, vol. 65, pp. 306–309. Springer, Singapore (2018). Scholar
  14. 14.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. LNM, vol. 898, pp. 366–381. Springer, Heidelberg (1981). Scholar
  15. 15.
    Flammer, J., Orgul, S., Costa, V.P., et al.: The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 21, 359–393 (2002)CrossRefGoogle Scholar
  16. 16.
    Kurysheva, N.I., Parshunina, O.A., Shatalova, E.O., et al.: Value of structural and hemodynamic parameters for the early detection of primary open-angle glaucoma. Curr. Eye Res. 42(3), 411–417 (2017)CrossRefGoogle Scholar
  17. 17.
    Schmetterer, L.: Ocular perfusion abnormalities in glaucoma. Russian Ophthalmol. J. 4, 100–109 (2015)Google Scholar
  18. 18.
    Siesky, B., Harris, A., Ehrlich, R., Kheradiya, N., Lopez, C.R.: Glaucoma risk factors: ocular blood flow. In: Schacknow, P., Samples, J. (eds.) The Glaucoma Book, pp. 111–134. Springer, New York (2010). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. A. Kiseleva
    • 1
  • P. V. Luzhnov
    • 1
    Email author
  • E. N. Iomdina
    • 2
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia
  2. 2.Helmholtz National Medical Research Center of Eye DiseasesMoscowRussia

Personalised recommendations