Technological Platform for the Control of the Medication Supply to People with Diabetes

  • Mauro Callejas-CuervoEmail author
  • Juan Pablo Contreras Barrera
  • David Leonardo Cárdenas Rengifo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1154)


This article presents the design of a technological platform called MedicHand, composed of a functional prototype of an electronic bracelet, and web system, elements which, together, allow for control the supply of medication to people who suffer from diabetes. In the first part, the problem Diabetes Mellitus (DM) for the immune system is discussed, as well as the situation of the medical treatments associated with this disease and the current medical trends. In the same way, the technologies involved in the construction of the device, the components that integrate the technological platform, the communication protocol and the design of the bracelet are described.


Medication supply Diabetes Monitoring system Electronic bracelet API REST 



The authors thank the participation of the other members of the Software Research Group of the Universidad Pedagógica y Tecnológica de Colombia, especially the members of the development of embedded devices line of investigation.


  1. 1.
    Organización Mundial de la Salud. Envejecimiento y Salud (2018)Google Scholar
  2. 2.
    Organización Mundial de la Salud. Las 10 principales causas de defunción (2018)Google Scholar
  3. 3.
    Fundación para la Diabetes. Diabetes una epidemia del siglo XXI (2015)Google Scholar
  4. 4.
    Brown, S., Raghinaru, D., Emory, E., Kovatchev, B.: First look at control-IQ: a new-generation automated insulin delivery system. Diab. Care 41(12), 2634–2636 (2018). Scholar
  5. 5.
    Hannon, T.S., et al.: Advancing diabetes management in adolescents: comparative effectiveness of mobile self-monitoring blood glucose technology and family-centered goal setting. Pediatr. Diab. 19(4), 776–781 (2018). Scholar
  6. 6.
    Sherwood, Z.: What factors influence glycaemic control in children aged under 11 years with type 1 diabetes? A literature review. J. Diab. Nurs. 20(6), 213–217 (2016)Google Scholar
  7. 7.
    Vrba, J., Vrba, D., Díaz, L., Fišer, O.: Metamaterial sensor for microwave non-invasive blood glucose monitoring. In: Lhotska, L., Sukupova, L., Lacković, I., Ibbott, G.S. (eds.) World Congress on Medical Physics and Biomedical Engineering 2018. IP, vol. 68/3, pp. 789–792. Springer, Singapore (2019). Scholar
  8. 8.
    Huzooree, G., Khedo, K.K., Joonas, N.: Data reliability and quality in body area networks for diabetes monitoring. In: Maheswar, R., Kanagachidambaresan, G.R., Jayaparvathy, R., Thampi, S.M. (eds.) Body Area Network Challenges and Solutions. EICC, pp. 55–86. Springer, Cham (2019). Scholar
  9. 9.
    Shapovalov, V.V., Gurevich, B.S., Dudnikov, S.Y., Belyaev, A.V., Zagorsky, I.G.: Optical non-invasive methods for glucose determination in human blood. Int. J. Pharm. Res. 10(1), 324–329 (2018)Google Scholar
  10. 10.
    Dinh, D.T.-M., Truong, V.A., Tran, A.N.-P., Le, H.X., Pham, H.T.-T.: Non-invasive glucose monitoring system utilizing near-infrared technology. IFMBE Proc. 69, 401–405 (2020)CrossRefGoogle Scholar
  11. 11.
    Wang, T.-T., et al.: A feasible image-based colorimetric assay using a smartphone RGB camera for point-of-care monitoring of diabetes. Talanta 206, 120211 (2020)CrossRefGoogle Scholar
  12. 12.
    Freestyle Libre. Abbott Diabetes Care Inc. (2019). Accessed 25 June
  13. 13.
    K’Track. PKVitality Inc. (2019). Accessed 25 July

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Software Research Group, Engineering FacultyUniversidad Pedagógica y Tecnológica de ColombiaTunjaColombia

Personalised recommendations