Advertisement

Hadean Earth pp 59-100 | Cite as

The Lunar Surface and Late Heavy Bombardment Concept

  • T. Mark HarrisonEmail author
Chapter
  • 93 Downloads

Abstract

As much as half of lunar surface rocks may have originated between 4.4 and 3.9 billion years and thus observations of, and samples from, Moon could attest to conditions then extant in the inner solar system. The concept of a lunar cataclysm at ~3.9 Ga grew from seemingly contradictory observations of elemental fractionation in lunar highland rocks. U–Pb—and some Rb–Sr—data suggested recrystallization occurred between about 4.0 and 3.8 Ga. The Late Heavy Bombardment (LHB) concept that emerged appeared supported by ~3.9 Ga 40Ar/39Ar “plateau ages” of lunar impact melt rocks, although no similar spike in ages was seen in the likely more globally distributed lunar meteorites. While the 40Ar/39Ar step-heating method can reveal intragrain isotope variations, this capability has several method-specific requirements that, if not met, preclude thermochronologic interpretations. Three such issues effectively rule out the use of virtually all lunar 40Ar/39Ar data as support for the LHB hypothesis: (1) the “plateau age” approach used is an aphysical concept for the thermally disturbed samples typical of most lunar impact melt rocks, (2) laboratory artifacts destroy preserved diffusion information, or create false apparent age gradients; and (3) obtaining meaningful thermal history information from extraterrestrial samples that have differing activation energies for Ar diffusion in their K-bearing phases requires a different laboratory protocol than was used on lunar rocks. Possibly due to these issues, no case in which multiple chronometric techniques have yielded intrasample concordancy of a lunar melt rock has yet been documented. Advancements in mass spectrometry now permit 40Ar/39Ar and U–Pb dating to be undertaken on small (10 s-of-μm diameter) in situ spots on glasses and accessory minerals in lunar rocks. This approach has the potential to transcend the analytical challenge posed by the continuous impact reworking of the lunar regolith that produces fine-scale polygenetic breccias of multiple age and origins. The longstanding assumption that lunar melt rocks originated from discrete, basin-forming events is obviated by lunar imaging that show impact melts formed in small highland craters and clusters of ‘light plains’ deposits radiating outward  >2000 km from large impact basins. The latter underscores how poorly the spatial relationships between large basins and their surrounding deposits were understood when impact chronologies were developed in the 1970s. The assumption that a specific lunar melt rock from a given landing site is representative of one of the basin-forming impacts is deeply flawed. Establishing a reliable, quantitative planetary impact chronology requires that all analyzed rocks be equally suitable for the application of specific chronometers. This may not be possible given the large contrasts in incompatible trace element distributions across the lunar surface (e.g., Procellarum KREEP terrane, South Pole Aiken basin). A conservative view of the lunar chronological record is that the large nearside basins are older than 3.82 Ga but these data are consistent with most of them being older than 3.92 Ga and possibly older than 4.35 Ga.

References

  1. Abramov, O., & Mojzsis, S. J. (2009). Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature, 459, 419–422.CrossRefGoogle Scholar
  2. Albarède, F. (1978). The recovery of spatial isotope distributions from stepwise degassing data. Earth and Planetary Science Letters, 39, 387–397.CrossRefGoogle Scholar
  3. Anand, M., Barnes, J. J., & Hallis, L. J. (2015). Lunar geology. In M. R. Lee & H Leroux (Eds.), Planetary mineralogy (Vol. 15, pp. 129–164). European Mineralogical Union Notes in Mineralogy.Google Scholar
  4. Armstrong, J. C., Wells, L. E., & Gonzalez, G. (2002). Rummaging through Earth’s attic for remains of ancient life. Icarus, 160, 183–196.CrossRefGoogle Scholar
  5. Baldwin, R. B. (1974). Was there a “terminal lunar cataclysm” 3.9–4.0 x 109 years ago? Icarus, 23, 157–166.CrossRefGoogle Scholar
  6. Barboni, M., Boehnke, P., Keller, B., Kohl, I.E., Schoene, B., Young, E.D., & McKeegan, K.D. (2017). Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.Google Scholar
  7. Bellucci, J. J., Nemchin, A. A., Grange, M. L., Robinson, K. L., Collins, G., Whitehouse, M. J., et al. (2019). Earth and Planetary Science Letters, 510, 173–185.Google Scholar
  8. Benz, W., Slattery, W. L., & Cameron, A. G. W. (1986). The origin of the Moon and the single-impact hypothesis I. Icarus, 66, 515–535.CrossRefGoogle Scholar
  9. Binder, A. B., & Roberts, D. L. (1970). Criteria for lunar site selection. IIT Research Institute, Report P-30, 38 pp.Google Scholar
  10. Bleeker, W. (2004a). Taking the pulse of planet Earth: A proposal for a new multi-disciplinary flagship project in Canadian solid Earth sciences. Geoscience Canada, 31, 179–190.Google Scholar
  11. Bleeker, W. (2004b). Towards a ‘natural’ time scale for the Precambrian—A proposal. Lethaia, 37, 219–222.CrossRefGoogle Scholar
  12. Boehnke, P. (2016). A Tale of Two Earths: Reconciling the Lunar and Terrestrial Hadean Records (Ph.D. thesis). University of California, Los Angeles.Google Scholar
  13. Boehnke, P., & Harrison, T. M. (2016). Illusory late heavy bombardments. Proceedings of the National Academy of Sciences, 113, 10802–10806.CrossRefGoogle Scholar
  14. Boehnke, P., Harrison, T. M., Heizler, M. T., & Warren, P. H. (2016). A model for meteoritic and lunar 40Ar/39 Ar age spectra: Addressing the conundrum of multi-activation energies. Earth and Planetary Science Letters, 453, 267–275.CrossRefGoogle Scholar
  15. Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., & Schmitt, A. K. (2013). Zircon saturation re-revisited. Chemical Geology, 351, 324–334.CrossRefGoogle Scholar
  16. Bogard, D. D. (1995). Impact ages of meteorites: A synthesis. Meteoritics, 30, 244–268.CrossRefGoogle Scholar
  17. Bogard, D. D. (2011). K-Ar ages of meteorites: clues to parent-body thermal histories. Chemie der Erde-Geochemistry, 71, 207–226.CrossRefGoogle Scholar
  18. Bogard, D. D., & Garrison, D. H. (2003). 39Ar-40Ar ages of eucrites and thermal history of asteroid 4 Vesta. Meteoritics & Planetary Science, 38, 669–710.Google Scholar
  19. Bogard, D. D., Nyquist, L. E., & Johnson, P. (1984). Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites. Geochimica et Cosmochimica Acta, 48, 1723–1739.CrossRefGoogle Scholar
  20. Bottke, W. F., & Norman, M. D. (2017). The late heavy bombardment. Annual Review of Earth and Planetary Sciences, 45, 619–647.CrossRefGoogle Scholar
  21. Brasser, R., Mojzsis, S. J., Werner, S. C., Matsumura, S., & Ida, S. (2016). Late veneer and late accretion to the terrestrial planets. Earth and Planetary Science Letters, 455, 85–93.CrossRefGoogle Scholar
  22. Brasser, R., Morbidelli, A., Gomes, R., Tsiganis, K., & Levison, H. F. (2009). Constructing the secular architecture of the solar system II: The terrestrial planets. Astronomy & Astrophysics, 507, 1053–1065.CrossRefGoogle Scholar
  23. Cameron, A. G., & Ward, W. R. (1976). The origin of the Moon. Lunar and Planetary Science Conference, 7, 120.Google Scholar
  24. Canup, R. M. (2004). Simulations of a late lunar forming Impact. Icarus, 168, 433–456.CrossRefGoogle Scholar
  25. Canup, R. M. (2014). Lunar-forming impacts: processes and alternatives. Philosophical Transactions of the Royal Society A, 372, 20130175.CrossRefGoogle Scholar
  26. Canup, R. M., & Asphaug, E. (2001). Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature, 412, 708.CrossRefGoogle Scholar
  27. Cassata, W. S., Renne, P. R., & Shuster, D. L. (2009). Argon diffusion in plagioclase and implications for thermochronometry: A case study from the Bushveld Complex, South Africa. Geochimica et Cosmochimica Acta, 73, 6600–6612.CrossRefGoogle Scholar
  28. Cassata, W. S., Renne, P. R., & Shuster, D. L. (2011). Argon diffusion in pyroxenes: Implications for thermochronometry and mantle degassing. Earth and Planetary Science Letters, 304, 407–416.CrossRefGoogle Scholar
  29. Chambers, J. (2004). Planetary accretion in the inner Solar System. Earth Planet Science Letters, 223, 241–252.CrossRefGoogle Scholar
  30. Chao, E. C. T. (1973). Geologic implications of the Apollo 14 Fra Mauro breccias and comparison with ejecta from the Ries crater, Germany. U.S. Geological Survey Journal Research, 1–18.Google Scholar
  31. Chapman, C. R., Cohen, B. A., & Grinspoon, D. H. (2007). What are the real constraints on the existence and magnitude of the late heavy bombardment? Icarus, 189, 233–245.CrossRefGoogle Scholar
  32. Cherniak, D. J., Lanford, W. A., & Ryerson, F. J. (1991). Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta, 5, 1663–1673.CrossRefGoogle Scholar
  33. Clement, M. S., Kaib, N. A., Raymond, S. N., & Walsh, K. J. (2018). Mars’ growth stunted by an early giant planet instability. Icarus, 311, 340–356.CrossRefGoogle Scholar
  34. Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E., & Walsh, K. J. (2019). The early instability scenario: terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 321, 778–790.Google Scholar
  35. Cloud, P. (1972). A working model of the primitive Earth. American Journal of Science, 272, 537–548.CrossRefGoogle Scholar
  36. Cohen, B. A., Swindle, T. D., & Kring, D. A. (2000). Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science, 290, 1754–1756.CrossRefGoogle Scholar
  37. Cohen, B. A., Swindle, T. D., & Kring, D. A. (2005). Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteoritics & Planetary Science, 40, 755–777.Google Scholar
  38. Collin, G. S., Melosh, H. J., & Osinski, G. R. (2012). The impact cratering process. Elements, 8, 25–30.CrossRefGoogle Scholar
  39. Collins, G. (2002). Hydrocode simulations of Chicxulub Crater collapse and peak-ring formation. Icarus, 157, 24–33.CrossRefGoogle Scholar
  40. Ćuk, M., & Stewart, S. T. (2012). Making the Moon from a fast-spinning Earth: A giant impact followed by resonant despinning. Science, 338, 1047–1052.CrossRefGoogle Scholar
  41. Culler, T. S., Becker, T. A., Muller, R. A., & Renne, P. R. (2000). Lunar impact history from 40Ar/39Ar dating of glass spherules. Science, 287, 1785–1788.CrossRefGoogle Scholar
  42. Dalrymple, G. B., & Lanphere, M. A. (1974). 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochimica et Cosmochimica Acta, 38, 715–738.CrossRefGoogle Scholar
  43. Dalrymple, G. B., & Ryder, G. (1993). 40Ar/39Ar age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation. Journal of Geophysical Research: Planets, 98, 13085–13095.Google Scholar
  44. Dalrymple, G. B., & Ryder, G. (1996). Argon‐40/argon‐39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. Journal Geophysics Research: Planets 101, 26069–26084.Google Scholar
  45. Darwin, G. H. (1879). On the bodily tides of viscous and semi-elastic spheroids, and on the ocean tides upon a yielding nucleus. Philosophical Transactions of the Royal Society London, Pt., 1, 1–35.Google Scholar
  46. Dauphas, N. (2017). The isotopic nature of the Earth’s accreting material through time. Nature, 541, 521–524.CrossRefGoogle Scholar
  47. Dauphas, N., Burkhardt, C., Warren, P. H., & Fang-Zhen, T. (2014). Geochemical arguments for an Earth-like Moon-forming impactor. Philosophical Transactions of the Royal Society, 372, 20130244.CrossRefGoogle Scholar
  48. Day, J. M. D., & Walker, R. J. (2015). Highly siderophile element depletion in the Moon. Earth and Planetary Science Letters, 423, 114–124.CrossRefGoogle Scholar
  49. de Sousa Ribeiro, R., Morbidelli, A., Raymond, S. N., Izidoro, A., Gomes, R., & Neto, E. V. (2020). Dynamical evidence for an early giant planet instability. Icarus, 339, 113605.CrossRefGoogle Scholar
  50. Deienno, R., Morbidelli, A., Gomes, R. S., & Nesvorný, D. (2017). Constraining the giant planets’ initial configuration from their evolution: Implications for the timing of the planetary instability. The Astronomical Journal, 153, 153.CrossRefGoogle Scholar
  51. Dominik, B., & Jessberger, E. K. (1978). Early lunar differentiation: 4.42–AE–old plagioclase clasts in Apollo 16 breccia 67435. Earth and Planetary Science Letters, 38, 407–415.CrossRefGoogle Scholar
  52. Fassett, C. I., & Minton, D. A. (2013). Impact bombardment of the terrestrial planets and the early history of the Solar System. Nature Geoscience, 6, 520–524.CrossRefGoogle Scholar
  53. Fleck, R. J., Sutter, J. F., & Elliot, D. H. (1977). Interpretation of discordant 40Ar/39Ar age-spectra of Mesozoic tholeiites from Antarctica. Geochimica et Cosmochimica Acta, 41, 15–32.Google Scholar
  54. Gapcynski, J. P., Blackshear, W. T., Tolson, R. H., & Compton, H. R. (1975). A determination of the lunar moment of inertia. Geophysical Reseach Letters, 2, 353–356.CrossRefGoogle Scholar
  55. Gardés, E., & Montel, J. M. (2009). Opening and resetting temperatures in heating geochronological systems. Contributions to Mineralogy and Petrology, 158, 185–195.CrossRefGoogle Scholar
  56. Genda, H., Brasser, R., & Mojzsis, S. J. (2017). The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth and Planetary Science Letters, 480, 25–32.CrossRefGoogle Scholar
  57. Gillis, J. J., Jolliff, B. L., & Korotev, R. L. (2004). Lunar surface geochemistry: Global concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data. Geochimica et Cosmochimica Acta, 68(3791–380), 5.Google Scholar
  58. Gladman, B. J., Burns, J. A., Duncan, M. J., & Levison, H. F. (1995). The dynamical evolution of lunar impact ejecta. Icarus, 118, 302–321.CrossRefGoogle Scholar
  59. Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. (2005). Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 435, 466–470.CrossRefGoogle Scholar
  60. Gradstein, F. M., Ogg, J. G., Smith, A. G., Bleeker, W., & Lourens, L. J. (2004). A new geologic time scale, with special reference to Precambrian and Neogene. Episodes, 27, 83–100.CrossRefGoogle Scholar
  61. Grange, M. L., Nemchin, A. A., Pidgeon, R. T., Timms, N., Muhling, J. R., & Kennedy, A. K. (2009). Thermal history recorded by the Apollo 17 impact melt breccia 73217. Geochimica et Cosmochimica Acta, 73, 3093–3107.CrossRefGoogle Scholar
  62. Green, T. H., & Watson, E. B. (1982). Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to ‘orogenic’rock series. Contributions to Mineralogy and Petrology, 79, 96–105.CrossRefGoogle Scholar
  63. Grieve, R. A. F., Cintala, M. J., & Therriault, A. M. (2006). Large-scale impacts and the evolution of the Earth’s crust: The early years. Geological Society of America Special Paper, 405, 22–31.Google Scholar
  64. Haber, T., Scherer, E. E., Bast, R., & Sprung, P. (2017). 176Lu-176Hf isochron dating of strongly cosmic ray exposed samples—A case study on Apollo 14 impact melt rock 14310. Lunar and Planetary Science Conference, 48, 2911.Google Scholar
  65. Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., & Smith, D. G. (1990). A geologic time scale 1989. Cambridge: Cambridge University Press.Google Scholar
  66. Harrison, T. M., Lovera, O. M., & Heizler, M. T. (1991). 40Ar/39Ar results for alkali feldspars containing diffusion domains with differing activation energy. Geochimica et Cosmochimica Acta, 55, 1435–1448.CrossRefGoogle Scholar
  67. Harrison, T. M., & Watson, E. B. (1984). The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta, 48, 1467–1477.CrossRefGoogle Scholar
  68. Hartmann, W. K. (1975). Lunar “cataclysm”: A misconception? Icarus, 24, 181–187.CrossRefGoogle Scholar
  69. Hartmann, W. K. (2019). History of the Terminal Cataclysm Paradigm: Epistemology of a planetary bombardment that never (?) happened. Geosciences, 9, 285.CrossRefGoogle Scholar
  70. Hartmann, W. K., & Davis, D. R. (1975). Satellite-sized planetesimals and lunar origin. Icarus, 24, 504–515.CrossRefGoogle Scholar
  71. Hartmann, W. K., & Neukum, G. (2001). Cratering chronology and the evolution of Mars. Space Science Reviews, 96, 165–194.CrossRefGoogle Scholar
  72. Hartmann, W. K., Ryder, G., Dones, L., & Grinspoon, D. (2000). The time-dependent intense bombardment of the primordial Earth/Moon system. In R. Canup & K. Righter (Eds.), Origin of the Earth and Moon (493–512), University of Arizona Press.Google Scholar
  73. Hartung, J. B. (1974). Can random impacts cause the observed 39Ar/40Ar age distribution for Lunar Highland rocks? Meteoritics, 9, 349.Google Scholar
  74. Head, J. W. (1974). Stratigraphy of the Descartes region (Apollo 16)—Implications for the origin of samples. Moon, 11, 77–99.CrossRefGoogle Scholar
  75. Holzheid, A., Sylvester, P., O’neill, H.S.C., Rubie, D. C., & Palme, H. (2000). Evidence for a late chondritic veneer in the Earth’s mantle from high-pressure partitioning of palladium and platinum. Nature 406, 396–399.Google Scholar
  76. Hood, L. L., & Artemieva, N. A. (2008). Antipodal effects of lunar basin-forming impacts: Initial 3D simulations and comparisons with observations. Icarus, 193, 485–502.CrossRefGoogle Scholar
  77. Hörz, F., Grieve, R., Heiken, G., Spudis, P., & Binder, A. (1991). Lunar surface processes. In G. H. Heiken et al. (Eds.), Lunar sourcebook (61–120). Cambridge Press.Google Scholar
  78. Huneke, J. C. (1976). Diffusion artifacts in dating by stepwise thermal release of rare gases. Earth and Planetary Science Letters, 28, 407–417.CrossRefGoogle Scholar
  79. James W. Head, (1976). Lunar volcanism in space and time. Reviews of Geophysics, 14(2), 265.Google Scholar
  80. Jessberger, E. K., & Dominik, B. (1979). Gerontology of the Allende meteorite. Nature, 277, 554.CrossRefGoogle Scholar
  81. Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L., & Wieczorek, M. A. (2000). Major lunar crustal terranes: Surface expressions and crust-mantle origins. Journal of Geophysical Research: Planets, 105, 4197–4216.CrossRefGoogle Scholar
  82. Kimura, K., Lewis, R. S., & Anders, E. (1974). Distribution of gold and rhenium between nickel-iron and silicate melts: Implications for the abundances of siderophile elements on the Earth and Moon. Geochimica et Cosmochimica Acta, 38, 683–701.CrossRefGoogle Scholar
  83. Korotev, R. L. (2005). Lunar geochemistry as told by lunar meteorites. Chemie der Erde-Geochemistry, 65, 297–346.CrossRefGoogle Scholar
  84. Kraus, R. G., Root, S., Lemke, R. W., Stewart, S. T., Jacobsen, S. B., & Mattsson, T. R. (2015). Impact vaporization of planetesimal cores in the late stages of planet formation. Nature Geoscience, 8, 269–272.CrossRefGoogle Scholar
  85. Kring, D. A., & Cohen, B. A. (2002). Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. Journal of Geophysical Research: Planets 107(E2).Google Scholar
  86. Levison, H. F., Dones, L., Chapman, C. R., Stern, S. A., Duncan, M. J., & Zahnle, K. (2001). Could the lunar “Late Heavy Bombardment” have been triggered by the formation of Uranus and Neptune? Icarus, 151, 286–306.CrossRefGoogle Scholar
  87. Lineweaver, C. H., Grether, D., & Hidas, M. (2002). How common are Earths? How common are Jupiters? Bioastronomy 2002: Life Among the Stars, ASP Conference Series (Vol. 28, pp. 1–4), arXiv preprint astro-ph/0209383.Google Scholar
  88. Liu, D., Jolliff, B. L., Zeigler, R. A., Korotev, R. L., Wan, Y., Xie, H., et al. (2012). Comparative zircon U-Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth and Planetary Science Letters, 319, 277–286.CrossRefGoogle Scholar
  89. Lock, S. J., & Stewart, S. T. (2017). The structure of terrestrial bodies: Impact heating, corotation limits, and synestias. Journal of Geophysical Research: Planets, 122, 950–982.Google Scholar
  90. Lovera, O. M., Richter, F. M., & Harrison, T. M. (1989). The 40Ar/39Ar thermochronometry for slowly cooled samples having a distribution of diffusion domain sizes. Journal of Geophysical Research: Solid Earth, 94, 17917–17935.CrossRefGoogle Scholar
  91. Magna, T., Dauphas, N., Righter, K., & Camp, R. (2017). Stable isotope constraints on the formation of Moon. LPI Contrib. 1988.Google Scholar
  92. Maher, K. A., & Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.CrossRefGoogle Scholar
  93. Mann, A. (2018). Bashing holes in the tale of Earth’s troubled youth. Nature, 553, 393–395.CrossRefGoogle Scholar
  94. Marchi, S., Bottke, W. F., Elkins-Tanton, L. T., Bierhaus, M., Wuennemann, K., Morbidelli, A., et al. (2014). Widespread mixing and burial of Earth’s Hadean crust by asteroid. Nature, 511, 578–582.CrossRefGoogle Scholar
  95. Marchi, S., Bottke, W. F., Cohen, B. A., Wünnemann, K., Kring, D. A., McSween, H. Y., De Sanctis, M. C., O’Brien, D. P., Schenk, P., Raymond, C. A., Russell, C. T. (2013). High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geoscience, 6(4), 303–307.Google Scholar
  96. Mark, R. K., Lee-Hu, C. N., & Wetherill, G. W. (1974). Rb-Sr age of lunar igneous rocks 62295 and 14310. Geochimica et Cosmochimica Acta, 38, 1643–1648.CrossRefGoogle Scholar
  97. Marvin, U. B. (1983). The discovery and initial characterization of Allan Hills 81005: The first lunar meteorite. Geophysical Reseach Letters, 10, 775–778.CrossRefGoogle Scholar
  98. Maurer, P., Eberhardt, P., Geiss, I., Gršgler, N., Stettler, A., Brown, G. M., et al. (1978). Pre-Imbrian craters and basins: Ages, compositions and excavation depths of Apollo 16 breccias. Geochimica et Cosmochimica Acta, 42, 1687–1720.CrossRefGoogle Scholar
  99. McDougall, I., & Harrison, T. M. (1999). Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press.Google Scholar
  100. McGetchin, T. R., Settle, M., & Head, J. W. (1973). Radial thickness variation in impact crater ejecta: Implications for lunar basin deposits. Earth and Planetary Science Letters, 20, 226–236.CrossRefGoogle Scholar
  101. Melosh, H. J. (1989). Impact cratering: A geologic process. Oxford University Press (Oxford Monographs on Geology and Geophysics, No. 11) (253 pp).Google Scholar
  102. Mercer, C. M., & Hodges, K. V. (2017). Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias. Journal of Geophysical Research: Planets, 122, 1650–1671.Google Scholar
  103. Mercer, C. M., Young, K. E., Weirich, J. R., Hodges, K. V., Jolliff, B. L., Wartho, J. A., et al. (2015). Refining lunar impact chronology through high spatial resolution 40 Ar/39 Ar dating of impact melts. Science Advances, 1, e1400050.CrossRefGoogle Scholar
  104. Merle, R. E., Nemchin, A. A., Grange, M. L., Whitehouse, M. J., & Pidgeon, R. T. (2014). High resolution U-Pb ages of Ca-phosphates in Apollo 14 breccias: Implications for the age of the Imbrium impact. Meteoritics & Planetary Science, 49, 2241–2251.CrossRefGoogle Scholar
  105. Merrihue, C., & Turner, G. (1966). Potassium-argon dating by activation with fast neutrons. Journal of Geophysical Research, 71, 2852–2857.CrossRefGoogle Scholar
  106. Meyer, C. (2009). 14310. Lunar Sample Compendium, 1–12 (https://www.lpi.usra.edu/lunar/samples/atlas/compendium/14310.pdf).
  107. Meyer, H. M., Denevi, B. W., Boyd, A. K., & Robinson, M. S. (2016). The distribution and origin of lunar light plains around orientale basin. Icarus, 273, 135–145.  https://doi.org/10.1016/j.icarus.2016.02.014.
  108. Meyer, H. M., Denevi, B. W., Boyd, A. K., & Robinson, M. S. (2018). A new global map of light plains from the lunar reconnaissance orbiter camera. In 49th Lunar and Planetary Science Conference, Abstract #1474.Google Scholar
  109. Meyer, C., Williams, I. S., & Compston, W. (1996). Uranium-lead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteoritics & Planetary Science, 31, 370–387.CrossRefGoogle Scholar
  110. Michael, G., Basilevsky, A., Neukum, G. (2018). On the history of the early meteoritic bombardment of the moon: was there a terminal lunar cataclysm? Icarus, 302, 80–103.Google Scholar
  111. Moorbath, S. (2005a). Palaeobiology: Dating earliest life. Nature, 434, 155–156.CrossRefGoogle Scholar
  112. Moorbath, S. (2005b). Oldest rocks, earliest life, heaviest impacts, and the Hadean-Archaean transition. Applied Geochemistry, 20, 819–824.CrossRefGoogle Scholar
  113. Morbidelli, A., Nesvorny, D., Laurenz, V., Marchi, S., Rubie, D. C., Elkins-Tanton, L., Wieczorek, M., Jacobson, S. (2018). The timeline of the lunar bombardment: revisited. Icarus, 305, 262–276.Google Scholar
  114. Nesvorný, D., Vokrouhlický, D., Bottke, W. F., & Levison, H. F. (2018). Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nature Astronomy, 2.  https://doi.org/10.1038/s41550-018-0564-3.
  115. Neukum, G., Ivanov, B. A., & Hartmann, W. K. (2001). Cratering records in the inner solar system in relation to the lunar reference system. Chronology and evolution of Mars (pp. 55–86). Dordrcht: Springer.CrossRefGoogle Scholar
  116. Norman, M. D., Duncan, R. A., & Huard, J. J. (2006). Identifying impact events within the lunar cataclysm from 40Ar–39Ar ages and compositions of Apollo 16 impact melt rocks. Geochimica et Cosmochimica Acta, 70, 6032–6049.CrossRefGoogle Scholar
  117. Oberbeck, V. R., Quaide, W. L., Gault, D. E., Hoerz, F., & Morrison, R. H. (1975). On the origin of the lunar smooth-plains. Moon, 12, 19–54.CrossRefGoogle Scholar
  118. Oberbeck, V. R., Quaide, W. L., Gault, D. E., Morrison, R. H., & Hörz, F. (1974). Smooth plains and continuous deposits of craters and basins. In 5th Proceedings of Lunar Science Conference (pp. 111–136).Google Scholar
  119. Ozima, M., Seki, K., Terada, N., Miura, Y. N., Podosek, F. A., & Shinagawa, H. (2005). Terrestrial nitrogen and noble gases in lunar soils. Nature, 436, 655–659.CrossRefGoogle Scholar
  120. Ozima, M., Yin, Q. Z., Podosek, F. A., & Miura, Y. N. (2008). Toward understanding early Earth evolution: Prescription for approach from terrestrial noble gas and light element records in lunar soils. Proceedings of the National Academy of Sciences, 105, 17654–17658.CrossRefGoogle Scholar
  121. Pietro, N. E., & Pieters, C. M. (2006). Modeling the provenance of the Apollo 16 regolith. Journal of Geophysical Research: Planets, 111(E09005), 1–13.Google Scholar
  122. Plescia, J. B., & Cintala, M. J. (2012). Impact melt in small lunar highland craters. Journal of Geophysical Research: Planets, 117, E12.CrossRefGoogle Scholar
  123. Righter, K., Humayun, M., & Danielson, L. (2008). Partitioning of palladium at high pressures and temperatures during core formation. Nature Geoscience, 1, 321–323.CrossRefGoogle Scholar
  124. Ryder, G., Koeberl, C., & Mojzsis, S. J. (2000). Heavy bombardment of the Earth at ~3.85 Ga: The search for petrographic and geochemical evidence. In R. Canup & K. Righter (Eds.), Origin of the Earth and Moon (pp. 475–492), University of Arizona Press.Google Scholar
  125. Safronov, V. S. (1954). On the growth of planets in the protoplanetary cloud. Astrron. Zh., 31, 499–510.Google Scholar
  126. Schaeffer, G. A., & Schaeffer, O. A. (1977). 39Ar/40Ar ages of lunar rocks. In Proceedings, Lunar and Planetary Science Conference VIII (pp. 2253–2300).Google Scholar
  127. Schmidt, O. Y. (1944). Meteorite theory of origin of Earth and planets. Doklady Akademii Nauk SSSR, 45, 245–249.Google Scholar
  128. Schultz, P. H., & Gault, D. E. (1985). Clustered impacts: Experiments and implications. Journal Geophysics Research, 90, 3701–3732.CrossRefGoogle Scholar
  129. Seki, K., Elphic, R. C., Hirahara, M., Terasawa, T., & Mukai, T. (2001). On atmospheric loss of oxygen ions from Earth through magnetospheric processes. Science, 291, 1939–1941.CrossRefGoogle Scholar
  130. Shea, E. K., Weiss, B. P., Cassata, W. S., Shuster, D. L., Tikoo, S. M., & Gattacceca, J. (2012). A long-lived lunar core dynamo. Science, 335, 453–456.CrossRefGoogle Scholar
  131. Shearer, C. K., Hess, P. C., Wieczorek, M. A., Pritchard, M. E., Parmentier, E. M., Borg, L. E., et al. (2006). Thermal and magmatic evolution of the Moon. Reviews in Mineralogy and Geochemistry, 60, 365–518.CrossRefGoogle Scholar
  132. Shuster, D. L., Balco, G., Cassata, W. S., Fernandes, V. A., Garrick-Bethell, I., & Weiss, B. P. (2010). A record of impacts preserved in the lunar regolith. Earth and Planetary Science Letters, 290, 155–165.CrossRefGoogle Scholar
  133. Sleep, N. H., Zahnle, K. J., Kasting, J. F., & Morowitz, H. J. (1989). Annihilation of ecosystems by large asteroid impacts on the early earth. Nature, 342, 139–142.CrossRefGoogle Scholar
  134. Snape, J. F., Nemchin, A. A., Grange, M. L., Bellucci, J. J., Thiessen, F., & Whitehouse, M. J. (2016). Phosphate ages in Apollo 14 breccias: Resolving multiple impact events with high precision U-Pb SIMS analyses. Geochimica et Cosmochimica Acta, 174, 13–29.CrossRefGoogle Scholar
  135. Spudis, P. D. (1993). The geology of multi-ring impact basins: The Moon and other planets. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  136. Spudis, P. D., Wilhelms, D. E., & Robinson, M. S. (2011). The Sculptured Hills of the Taurus Highlands: Implications for the relative age of Serenitatis, basin chronologies and the cratering history of the Moon. Journal of Geophysical Research: Planets, 116, E12.CrossRefGoogle Scholar
  137. Stettler, A., Eberhardt, P., Geiss, J., Grögler, N., & Maurer, P. (1973). Ar39-Ar40 ages and Ar37-Ar38 exposure ages of lunar rocks. Lunar and Planetary Science Conference Proceedings, 4, 1865–1888.Google Scholar
  138. Stevenson, D. J., & Halliday, A. N. (2014). The origin of the Moon. Philosophical Transactions of the Royal Society A, A 372.  https://doi.org/10.1098/rsta.2014.0289.
  139. Stöffler, D., & Ryder, G. (2001). Stratigraphy and isotope ages of lunar geologic units: Chronological standard for the inner solar system. Chronology and evolution of Mars (pp. 9–54). Dordrecht: Springer.CrossRefGoogle Scholar
  140. Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., & Kring, D. A. (2005). The origin of planetary impactors in the inner solar system. Science, 309, 1847–1850.CrossRefGoogle Scholar
  141. Swindle, T. D., Kring, D. A., & Weirich, J. R. (2014). 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. Geological Society, London, Special Publications, 378, 333–347.Google Scholar
  142. Tatsumoto, M., Hedge, C. E., Doe, B. R., & Unruh, D. M. (1972). U-Th-Pb and Rb-Sr measurements on some Apollo 14 lunar samples. Lunar and Planetary Science Conference Proceedings, 3, 1531–1555.Google Scholar
  143. Taylor, D. J., McKeegan, K. D., & Harrison, T. M. (2009). 176Lu-176Hf zircon evidence for rapid lunar differentiation. Earth and Planetary Science Letters, 279, 157–164.  https://doi.org/10.1016/j.epsl.2008.12.030.CrossRefGoogle Scholar
  144. Taylor, S. R., Taylor, G. J., & Taylor, L. A. (2006). The moon: A Taylor perspective. Geochimica et Cosmochimica Acta, 70, 5904–5918.CrossRefGoogle Scholar
  145. Tera, F., Papanastassiou, D. A., & Wasserburg, G. J. (1974). Isotopic evidence for a terminal lunar cataclysm. Earth and Planetary Science Letters, 22, 1–21.CrossRefGoogle Scholar
  146. Terada, K., Yokota, S., Saito, Y., Kitamura, N., Asamura, K., & Nishino, M. N. (2017). Biogenic oxygen from earth transported to the moon by a wind of magnetospheric ions. Nature Astronomy, 1, 1–5.Google Scholar
  147. Thiessen, F., Nemchin, A. A., Snape, J. F., Whitehouse, M. J., & Bellucci, J. J. (2017). Impact history of the Apollo 17 landing site revealed by U-Pb SIMS ages. Meteoritics & Planetary Science, 52, 584–611.CrossRefGoogle Scholar
  148. Tikoo, S. M., Weiss, B. P., Shuster, D. L., Suavet, C., Wang, H., & Grove, T. L. (2017). A two-billion-year history for the lunar dynamo. Science Advances, 3, e1700207.CrossRefGoogle Scholar
  149. Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. (2005). Origin of the orbital architecture of the giant planets of the Solar System. Nature, 435, 459–461.CrossRefGoogle Scholar
  150. Turner, G. (1970). Argon–40/argon–39 dating of lunar rock samples. Science, 167, 466–468.CrossRefGoogle Scholar
  151. Turner, G. (1977). Potassium–argon chronology of the moon. Physics and Chemistry of the Earth, 10, 145–195.Google Scholar
  152. Turner, G., & Cadogan, P. H. (1974). Possible effects of 39Ar recoil in 40Ar–39Ar dating. Geochimica et Cosmochimica Acta Suppl. 5 (Proceedings of the Fifth Lunar Science Conference, pp. 1601–1615).Google Scholar
  153. Turner, G., & Cadogan, P. H. (1975). The history of lunar bombardment inferred from Ar-40-Ar-39 dating of highland rocks. In Lunar and Planetary Science Conference Proceedings (Vol. 6, pp. 1509–1538). New York, NY: Pergamon.Google Scholar
  154. Turner, G., Miller, J. A., & Grasty, R. L. (1966). The thermal history of the Bruderheim meteorite. Earth and Planetary Science Letters, 1, 155–157.CrossRefGoogle Scholar
  155. Urey, H. C. (1952a). The planets: Their origin and development (p. 245). New Haven: Yale University Press.Google Scholar
  156. Urey, H. C. (1952b). The origin of the Earth. Scientific American, 187(October), 53–61.CrossRefGoogle Scholar
  157. Van Kranendonk, M. J., Altermann, W., Beard, B. L., Hoffman, P. F., Johnson, C. M., Kasting, J. F., et al. (2012) A chronostratigraphic division of the Precambrian: possibilities and challenges. In F. M. Gradstein, et al. (Eds.), The geologic time scale (pp. 299–392). Elsevier.Google Scholar
  158. Villa, I. M., Huneke, J. C., & Wasserburg, G. J. (1983). 39Ar recoil losses and presolar ages in Allende inclusions. Earth and Planetary Science Letters, 63, 1–12.CrossRefGoogle Scholar
  159. Warren, P. H. (1985). The magma ocean concept and lunar evolution. Annual Review of Earth and Planetary Sciences, 13, 201–240.CrossRefGoogle Scholar
  160. Warren, P. H. (2004). The Moon. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on geochemistry (pp. 559–599), Elsevier, Amsterdam.Google Scholar
  161. Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.CrossRefGoogle Scholar
  162. Weber, R. C., Lin, P. Y., Garnero, E. J., Williams, Q., & Lognonne, P. (2011). Seismic detection of the lunar core. Science, 331, 309–312.CrossRefGoogle Scholar
  163. Weiss, B. P., & Tikoo, S. M. (2014). The lunar dynamo. Science, 346(6214), 1246753.Google Scholar
  164. Wetherill, G. W. (1975). Late heavy bombardment of the moon and terrestrial planets. In Proceedings 6th Lunar Science Conference (pp. 1539–1561), March 17–21, Houston, TX, Pergamon, New York.Google Scholar
  165. Wetherill, G. W. (1995). How special is Jupiter? Nature, 373, 470.CrossRefGoogle Scholar
  166. Wieczorek, M. A., & Zuber, M. T. (2001). The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling. Geophysical Reseach Letters, 28, 4023–4026.CrossRefGoogle Scholar
  167. Wielicki, M. M., & Harrison, T. M. (2015). Zircon formation in impact melts: Complications for deciphering planetary impact histories. Large Meteorite Impacts and Planetary Evolution V: Geological Society of America Special Paper, 518, 127–134.CrossRefGoogle Scholar
  168. Wilhelms, D. E. (1965). Fra Mauro and Cayley Formations in the Mare Vaporum and Julius Caesar quadrangles. U. S. Geological Survey open-file report 13, 28 pp.Google Scholar
  169. Wilhelms, D. E. (1970). Summary of lunar stratigraphy-telescopic observations. U.S. Geological Survey Professional Paper No. 599-F, 47 pp.Google Scholar
  170. Wisdom, J., & Tian, Z. (2015). Early evolution of the Earth-Moon system with a fast-spinning Earth. Icarus, 256, 138–146.CrossRefGoogle Scholar
  171. Wood, J. A., Dickey, J. S., Marvin, U. B., & Powell, B. N. (1970). Lunar anorthosites. Science, 167, 602–604.CrossRefGoogle Scholar
  172. Young, K. E., van Soest, M. C., Hodges, K. V., Watson, E. B., Adams, B. A., & Lee, P. (2013). Impact thermochronology and the age of Haughton impact structure, Canada. Geophysical Research Letters, 40, 3836–3840.CrossRefGoogle Scholar
  173. Zahnle, K., Arndt, N., Cockell, C., Halliday, A., Nisbet, E., Selsis, F., et al. (2007). Emergence of a habitable planet. Space Science Reviews, 129, 35–78.CrossRefGoogle Scholar
  174. Zappala, V., Cellino, A., Gladman, B. J., Manley, S., & Migliorini, F. (1998). Asteroid showers on Earth after family breakup events. Icarus, 134, 176–179.CrossRefGoogle Scholar
  175. Zellner, N. E. (2017). Cataclysm no more: New views on the timing and delivery of lunar impactors. Origins of Life and Evolution of Biospheres, 47, 261–280.CrossRefGoogle Scholar
  176. Zhang, J., Dauphas, N., Davis, A. M., Leya, I., & Fedkin, A. (2012). The proto-Earth as a significant source of lunar material. Nature Geoscience, 5, 251.CrossRefGoogle Scholar
  177. Zhang, B., Lin, Y., Moser D. E., Shieh, S. R., & Bouvier, A. (2018). Imbrium zircon age for Apollo 73155 Serenitatis impact melt breccia: Implications for the lunar bombardment. Bombardment: Shaping planetary surfaces and their environments 2018, LPI Contrib. No. 2107, Abstract 2021.Google Scholar
  178. Zharkov. (2000). On the history of the lunar orbit. Solar System Research 34, 1–11.Google Scholar
  179. Zhu, M. H., Artemieva, N., Morbidelli, A., Yin, Q. Z., Becker, H., & Wünnemann, K. (2019). Reconstructing the late-accretion history of the Moon. Nature, 571(7764), 226–229.Google Scholar
  180. Ziethe, R., Seiferlin, K., & Hiesinger, H. (2009). Duration and extent of lunar volcanism: Comparison of 3D convection models to mare basalt ages. Planetary and Space Science, 57, 784–796.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth, Planetary and Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations