Thermal Evolution Models

  • T. Mark HarrisonEmail author


The study of Earth as an object whose history can be understood by application of physical laws dates back 200 years. This tradition is, however, rife with missteps related to as yet undiscovered physics or fundamentally incorrect assumptions. While the former is unavoidable, the latter amounts to self-inflicted wounds that may have forestalled scientific progress. Even in the absence of knowledge of initial conditions, linear mathematical relationships such as first order loss (e.g., radioactive decay) have proved useful in predicting Hadean conditions. However, more complex physical systems cannot be uniquely extrapolated back in time. For example, mantle convection, a highly non-linear, dispersive, chaotic system is, by its very nature, uninvertible. This fact has not inhibited generations of modeler’s from making ab initio predictions regarding early Earth evolution. Their results were initially limited by technological impediments and adoption of assumptions regarding the relationship between interior temperature and planetary heat loss that narrowed possible solutions. Radically new proposals regarding both the latter issue and discontinuous transitions between modes of heat loss have tempered earlier conclusions that plate-tectonic-like behavior could not arise on early Earth. Physical calculations have an important role to play in assessing the plausibility of Hadean geodynamic models, but should best be seen as “convenient fictions”.


  1. Arevalo, R., McDonough, W. F., & Luong, M. (2009). The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters, 278, 361–369.CrossRefGoogle Scholar
  2. Arevalo, R., McDonough, W. F., Stracke, A., Willbold, M., Ireland, T. J., & Walker, R. J. (2013). Simplified mantle architecture and distribution of radiogenic power. Geochemistry, Geophysics, Geosystems, 14, 2265–2285.CrossRefGoogle Scholar
  3. Becquerel, H. (1896). On the rays emitted by phosphorescence. Compt. Rend. Hebd. Seances Acad. Sci., 122, 420–421.Google Scholar
  4. Bedini, R. M., Blichert-Toft, J., Boyet, M., & Albarède, F. (2004). Isotopic constraints on the cooling of the continental lithosphere. Earth and Planetary Science Letters, 223, 99–111.CrossRefGoogle Scholar
  5. Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2013). Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. The Astrophysical Journal Supplement Series, 208(20), 1–54.Google Scholar
  6. Bowen, N. L. (1928). Evolution of igneous rocks. Princeton University Press.Google Scholar
  7. Box, G. E., & Draper, N. R. (1987). Empirical model-building and response surfaces. Wiley.Google Scholar
  8. Boyet, M., & Carlson, R. W. (2006). A new geochemical model for the Earth’s mantle inferred from 146Sm-142Nd systematics. Earth and Planetary Science Letters, 250, 254–268.CrossRefGoogle Scholar
  9. Burchfield, J. D. (1975). Lord Kelvin and the age of the Earth. London: Macmillan.CrossRefGoogle Scholar
  10. Cameron, A. G. W. (1962). The formation of the sun and planets. Icarus, 1, 13–69.CrossRefGoogle Scholar
  11. Chamberlin, T. C. (1899). Lord Kelvin’s address on the age of the earth as an abode fitted for life. Science, 9, 889–901.CrossRefGoogle Scholar
  12. Christensen, U. R. (1985). Thermal evolution models for the Earth. Journal of Geophysical Research, 90, 2995–3007.CrossRefGoogle Scholar
  13. Christensen, U. R., & Hofmann, A. W. (1994). Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research, 99, 19867–19884.CrossRefGoogle Scholar
  14. Cloud, J. (1818). An attempt to ascertain the fusing temperature of metals. Transactions of the American Philosophical Society, 1, 167–169.CrossRefGoogle Scholar
  15. Davies, G. F. (1980). Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. Journal of Geophysical Research: Solid Earth, 85, 2517–2530.CrossRefGoogle Scholar
  16. Davies, G. F. (1992). On the emergence of plate tectonics. Geology, 20, 963–966.CrossRefGoogle Scholar
  17. Davies, G. F. (2002). Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochimica et Cosmochimica Acta, 66, 3125–3142.CrossRefGoogle Scholar
  18. Davies, G. F. (2006). Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth and Planetary Science Letters, 243, 376–382.CrossRefGoogle Scholar
  19. DePaolo, D. J. (1981). Nd isotopic studies: Some new perspectives on Earth structure and evolution. Eos, Transactions American Geophysical Union, 62, 137–137.Google Scholar
  20. de Buffon, G. L. L. “Count”. (1778). Histoire Naturelle, Générale et Particulière. Supplément, Tome Cinquième. L’Imprimerie Royale, Paris, pp. 615 + 8 + 23.Google Scholar
  21. Dubuffet, F., Yuen, D. A., & Rabinowicz, M. (1999). Effects of a realistic mantle thermal conductivity on patterns of 3-D convection. Earth and Planetary Science Letters, 171, 401–409.CrossRefGoogle Scholar
  22. Forsyth, D., & Uyeda, W. S. (1975). On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 4, 163–200.CrossRefGoogle Scholar
  23. Fourier, J. B. J. (1820). Extrait d’un mémoire sur le refroidissement séculaire du globe terrestre. Bulletin des Sciences par la Société Philomathique de Paris, Ser., 3, 58–70.Google Scholar
  24. Gamow, G. (1947). One Two Three Infinity: Facts and Speculations of Science. Courier Corporation.Google Scholar
  25. Gerya, T. V. (2014). Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth and Planetary Science Letters, 391, 183–192.CrossRefGoogle Scholar
  26. Gold, T. (1987) Power From the Earth: Deep Earth Gas—Energy for the Future, London, Dent and Sons.Google Scholar
  27. Hansen, U., Yuen, D. A., Kroening, S. E., & Larsen, T. B. (1993). Dynamical consequences of depth-dependent thermal expansivity and viscosity on mantle circulations and thermal structure. Physics of the Earth and Planetary Interiors, 77, 205–223.CrossRefGoogle Scholar
  28. Harrison, T. M. (1987). Comment on “Kelvin and the age of the earth”. Journal of Geology, 95, 725–727.CrossRefGoogle Scholar
  29. Heaviside, O. (1899). Electromagnetic theory (Vol. II). New York: Van Nostrand.Google Scholar
  30. Heirtzler, J. R., & Le Pichon, X. (1965). Crustal structure of the mid-ocean ridges: 3. Magnetic anomalies over the mid-Atlantic ridge. Journal of Geophysical Research, 70, 4013–4033.CrossRefGoogle Scholar
  31. Herzberg, C., Condie, K., & Korenaga, J. (2010). Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292, 79–88.CrossRefGoogle Scholar
  32. Hynes, A. (2013). How feasible was subduction in the Archean? Canadian Journal of Earth Sciences, 51, 286–296.CrossRefGoogle Scholar
  33. Jeffreys, H. (1924). The Earth. Its origin, history and physical constitution. Cambridge University Press.Google Scholar
  34. Kelvin. (1899). The age of the earth as an abode fitted for life. Science, 9, 665–674 and 704–711.Google Scholar
  35. Korenaga, J. (2003). Energetics of mantle convection and the fate of fossil heat. Geophysical Reseach Letters, 30, 1437.Google Scholar
  36. Korenaga, J. (2006). Archean geodynamics and the thermal evolution of Earth. In K. Benn, J. -C. Mareschal, & K. Condie (Eds.) Archean Geodynamics and Environments (vol. 164, pp. 7–32). AGU Geophysical Monograph Series.Google Scholar
  37. Korenaga, J. (2011). Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. Journal of Geophysical Research, 116, B12403.CrossRefGoogle Scholar
  38. Korenaga, J. (2016). Can mantle convection be self-regulated? Science Advances, 2(8), e1601168.Google Scholar
  39. Korenaga, J. (2017). Pitfalls in modeling mantle convection with internal heat production. Journal of Geophysical Research: Solid Earth, 4064–4080.
  40. Lenardic, A., & Kaula, W. M. (1993). A numerical treatment of geodynamic viscous flow problems involving the advection of material interfaces. Journal of Geophysical Research: Solid Earth, 98, 8243–8260.Google Scholar
  41. Lyubetskaya, T., & Korenaga, J. (2007). Chemical composition of Earth’s primitive mantle and its variance: 1 Method and results. Journal of Geophysical Research, 112, B03211. Scholar
  42. McKenzie, D., & Bickle, M. J. (1988). The volume and composition of melt generated by extension of the lithosphere. Journal of Petrology, 29, 625–679.CrossRefGoogle Scholar
  43. Moore, W. B., & Lenardic, A. (2015). The efficiency of plate tectonics and nonequilibrium dynamical evolution of planetary mantles. Geophysical Research Letters, 42, 9255–9260.CrossRefGoogle Scholar
  44. Moore, W. B., & Webb, A. A. G. (2013). Heat-pipe Earth. Nature, 501, 501–505.CrossRefGoogle Scholar
  45. Nakagawa, T., & Tackley, P. J. (2004). Effects of a perovskite–postperovskite phase change near core-mantle boundary in compressible mantle convection. Geophysical Research Letters, 31, L16611. Scholar
  46. Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the Earth sciences. Science, 263, 641–646.CrossRefGoogle Scholar
  47. Perry, J. (1895a). On the age of the earth. Nature, 51, 224–227.CrossRefGoogle Scholar
  48. Perry, J. (1895b). On the age of the earth. Nature, 51, 341–342.CrossRefGoogle Scholar
  49. Perry, J. (1895c). The age of the earth. Nature, 51, 582–585.CrossRefGoogle Scholar
  50. Richter, F. M. (1986). Kelvin and the age of the earth. Journal of Geology, 94, 395–401.CrossRefGoogle Scholar
  51. Richter, F. M., & McKenzie, D. P. (1978). Simple plate models of mantle convection. Journal of Geophysics, 44, 441–471.Google Scholar
  52. Richter, F. M., & McKenzie, D. P. (1981) On some consequences and possible causes of layered mantle convection. Journal of Geophysical Research: Solid Earth, 86, 6133–6142.Google Scholar
  53. Rutherford, E. (1905). Radio-activity (p. 580). Cambridge University Press.Google Scholar
  54. Safronov, V. S. (1958). On the growth of terrestrial planets. Vopr. Kosmog., Akad. Nauk S.S.S.R. 6, 63–77.Google Scholar
  55. Schubert, G., Stevenson, D., & Cassen, P. (1980). Whole planet cooling and the radiogenic heat source contents of the Earth and Moon. Journal of Geophysical Research, 85, 2531–2538.CrossRefGoogle Scholar
  56. Sclater, J., Jaupart, C., & Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics, 18, 269–311.CrossRefGoogle Scholar
  57. Sharpe, H. N., & Peltier, W. R. (1978). Parameterized mantle convection and the Earth’s thermal history. Geophysical Research Letters, 5, 737–740.CrossRefGoogle Scholar
  58. Sizova, E., Gerya, T., Stüwe, K., & Brown, M. (2015). Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambrian Research, 271, 198–224.CrossRefGoogle Scholar
  59. Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. Journal of Geophysical Research, 105, 17563–17578.CrossRefGoogle Scholar
  60. Sleep, N. H., Zahnle, K. J., & Lupu, R. E. (2014). Terrestrial aftermath of the Moon-forming impact. Philosophical Transactions of the Royal Society A, 372, 20130172.CrossRefGoogle Scholar
  61. Slichter, L. B. (1941). Cooling of the Earth. Bulletin of the Geological Society of America, 52, 561–600.CrossRefGoogle Scholar
  62. Smith, J. V. (1981). The first 800 million years of earths history. Philosophical Transactions of the Royal Society London Ser. A 301, 401–422.Google Scholar
  63. Solomatov, V. S. (1995). Scaling of temperature-and stress-dependent viscosity convection. Physics of Fluids, 7, 266–274.CrossRefGoogle Scholar
  64. Solomatov, V. S. (2007). Magma oceans and primordial mantle differentiation. In G. Schubert (Ed.), Treatise on Geophysics 9 (pp. 91–120). Oxford: Elsevier.CrossRefGoogle Scholar
  65. Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Physics of the Earth and Planetary Interiors, 19, 168–182.CrossRefGoogle Scholar
  66. Stern, R. J., Gerya, T., & Tackley, P. J. (2017). Tackling unanswered questions on what shapes Earth. Eos 98.
  67. Stevenson, D. J. (1983). The nature of the earth prior to the oldest known rock record-The Hadean earth. Earth’s earliest biosphere: Its origin and evolution (pp. 32–40). Princeton, NJ: Princeton University Press.Google Scholar
  68. Stewart, C. A., & Turcotte, D. L. (1989). The route to chaos in thermal convection at infinite Prandtl number: 1. Some trajectories and bifurcations. Journal of Geophysical Research: Solid Earth, 94, 13707–13717.CrossRefGoogle Scholar
  69. Strutt, R. J. (1906). On the distribution of radium in the earth’s crust and on the earth’s internal heat. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 77A, 472–485.Google Scholar
  70. Thomson, W. (1863). On the secular cooling of the earth. Philosophical Magazine Series, 4(25), 1–14.CrossRefGoogle Scholar
  71. Tozer, D. C. (1965). Heat transfer and convection currents. Philosophical Transactions of the Royal Society A, 258, 252–271.Google Scholar
  72. Tozer, D. C. (1972). The present thermal state of the terrestrial planets. Physics of the Earth and Planetary Interiors, 6, 182–197.CrossRefGoogle Scholar
  73. Turcotte, D. L. (1997). Fractals and Chaos in Geology and Geophysics (p. 412). Cambridge University Press.Google Scholar
  74. Turcotte, D. L., & Schubert, G. (2002). Geodynamics: applications of continuum physics to geological problems (2nd Edn.). New York, NY: Wiley.Google Scholar
  75. Urey, H. C. (1952). The planets: their origin and development (p. 245). New Haven: Yale University Press.Google Scholar
  76. Urey, H. C. (1955). The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences of the United States of America, 41, 127–144.CrossRefGoogle Scholar
  77. Weller, M. B., & Lenardic, A. (2012). Hysteresis in mantle convection: plate tectonics systems. Geophysical Research Letters, 39(L10202), 1–5.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth, Planetary and Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations