Hadean Earth pp 249-272 | Cite as

Morpho- and Chemo-Fossil Evidence of Early Life

  • T. Mark HarrisonEmail author


This chapter summarizes what is known about the timing of the emergence of life on Earth from the morpho- and chemo-fossil (chemical and isotopic signals remaining from the decomposition of living organisms) records. The geologic record back to ca. 3.5 billion years includes low grade sedimentary rocks in which organic residues of microbiota present during deposition have remained substantially intact. As different metabolic mechanisms variably fractionate carbon isotopes toward isotopically light values, a longstanding strategy has been to measure δ13C in these organic residues, or kerogens, for biologic signatures. When compared to carbon isotopes in inorganic carbonate rocks, a consistent offset is seen throughout the past 3.5 billion years with inorganic carbon averaging δ13C close to 0‰ and kerogens yielding δ13C of approximately −25‰. As the latter value is broadly characteristic of oxygenating photosynthesis, this relationship has been seen as evidence of past biologic activity. However, as metamorphic grade increases, kerogens are reacted to simpler hydrocarbons, ultimately yielding graphitic residues. The discovery of isotopically light carbon isotopes in microscopic graphite inclusions in rocks as old as ca. 3.83 billion years and in a 4.1 Ga zircon extends the possible emergence of life on this planet back into the Hadean eon. Although inorganic mechanisms exist that could potentially produce light δ13C signatures, these isotopic data are consistent with molecular clock calibrations of genomic mutations which suggest a lower bound for the time of life’s origin between 4.1 and 4.4 billion years.


  1. Alleon, J., & Summons, R. E. (2019). Organic geochemical approaches to understanding early life. Free Radical Biology and Medicine.Google Scholar
  2. Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A., & Heirwegh, C. M. (2018). Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature, 563, 241–244.Google Scholar
  3. Altermann, W., & Kazmierczak, J. (2003). Archean microfossils: A reappraisal of early life on Earth. Research in Microbiology, 154, 611–617.CrossRefGoogle Scholar
  4. Amthor, J. E., Grotzinger, J. P., Schröder, S., Bowring, S. A., Ramezani, J., Martin, M. W., et al. (2003). Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian boundary in Oman. Geology, 31, 431–434.CrossRefGoogle Scholar
  5. Awramik, S. M., Schopf, J. W., & Walter, M. R. (1983). Filamentous fossil bacteria from the Archean of Western Australia. Precambrian Research, 20, 357–374.CrossRefGoogle Scholar
  6. Barghoorn, E. S., & Tyler, S. A. (1965). Microorganisms from the Gunflint chert. Science, 147, 563–577.CrossRefGoogle Scholar
  7. Barnes, R. M., Johnston, H. M., MacKenzie, N., Tobin, S. J., & Taglang, C. M. (2018). The effect of ad hominem attacks on the evaluation of claims promoted by scientists. PLoS ONE, 13, e0192025.CrossRefGoogle Scholar
  8. Battistuzzi, F. U., Feijão, A., & Hedges, S. B. (2004). A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology, 4, 44–51.
  9. Bell, E. A., Boehnke, P., Barboni, M., & Harrison, T. M. (2019). Tracking chemical alteration in magmatic zircon using REE patterns. Chemical Geology, 510, 56–71.Google Scholar
  10. Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. (2015). Potentially biogenic carbon preserved in a 4.1 Ga zircon. Proceedings of The National Academy of Sciences, 112, 14518–14521.Google Scholar
  11. Bell, E. A., Boehnke, P., & Harrison, T. M. (2016). Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochimica et Cosmochimica Acta, 191, 187–202.CrossRefGoogle Scholar
  12. Bell, E. A., Boehnke, P., & Harrison, T. M. (2017). Applications of biotite inclusion composition to zircon provenance determination. Earth and Planetary Science Letters, 473, 237–246.CrossRefGoogle Scholar
  13. Bell, E. A., Boehnke, P., Harrison, T. M., & Wielicki, M. M. (2018). Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477, 151–160.CrossRefGoogle Scholar
  14. Bell, E. A., & Harrison, T. M. (2013). Post-Hadean transitions in Jack Hills zircon provenance: A signal of the Late Heavy Bombardment? Earth and Planetary Science Letters, 364, 1–11.CrossRefGoogle Scholar
  15. Bernet, M. (2009). A field-based estimate of the zircon fission-track closure temperature. Chemical Geology, 259, 181–189.CrossRefGoogle Scholar
  16. Betts, H. C., Puttick, M. N., Clark, J. W., Williams, T. A., Donoghue, P. C., & Pisani, D. (2018). Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nature Ecology & Evolution, 2, 1556–1562.Google Scholar
  17. Beyssac, O., Goffé, B., Petitet, J. P., Froigneux, E., Moreau, M., & Rouzaud, J. N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59(10), 2267–2276.Google Scholar
  18. Boato, G. (1954). The isotopic composition of hydrogen and carbon in the carbonaceous chondrites. Geochimica et Cosmochimica Acta, 6, 209–220.CrossRefGoogle Scholar
  19. Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., & Kolosov, P. (1993). Calibrating rates of Early Cambrian evolution. Science, 261, 1293–1298.CrossRefGoogle Scholar
  20. Brasier, M. D., Green, O. R., Jephcoat, A. P., Kleppe, A. K., Van Kranendonk, M. J., Lindsay, J. F., et al. (2002). Questioning the evidence for Earth’s oldest fossils. Nature, 416, 76–81.CrossRefGoogle Scholar
  21. Brasier, M. D., Antcliffe, J., Saunders, M., & Wacey, D. (2015). Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proceedings of the National Academy of Sciences, 112, 4859–4864.CrossRefGoogle Scholar
  22. Cates, N. L., & Mojzsis, S. J. (2006). Chemical and isotopic evidence for widespread Eoarchean (≥3750 Ma) metasedimentary enclaves in southern West Greenland. Geochimica et Cosmochimica Acta, 70, 4229–4257.CrossRefGoogle Scholar
  23. Cherniak, D. J., Lanford, W. A., & Ryerson, F. J. (1991). Lead diffusion in apatite and zircon using ion implantation and Rutherford backscattering techniques. Geochimica et Cosmochimica Acta, 55, 1663–1673.CrossRefGoogle Scholar
  24. Clayton, R. N. (1993). Oxygen isotopes in meteorites. Annual Review of Earth and Planetary Sciences, 21, 115–149.CrossRefGoogle Scholar
  25. Delacour, A., Früh-Green, G. L., Bernasconi, S. M., Schaeffer, P., & Kelley, D. S. (2008). Carbon geochemistry of serpentinites in the Lost City Hydrothermal System (30°N, MAR). Geochimica et Cosmochimica Acta, 72, 3681–3702.CrossRefGoogle Scholar
  26. Des Marais, D. J. (1997). Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic Eon. Organic Geochemistry, 27, 185–193.CrossRefGoogle Scholar
  27. Dobrzhinetskaya, L., Wirth, R., & Green, H. (2014). Diamonds in Earth’s oldest zircons from Jack Hills conglomerate Australia are contamination. Earth and Planetary Science Letters, 387, 212–218.CrossRefGoogle Scholar
  28. Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., et al. (2017). Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature, 543, 60–64.CrossRefGoogle Scholar
  29. Epstein, S., Buchsbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64, 1315–1326.CrossRefGoogle Scholar
  30. Farquhar, J., Wing, B. A., McKeegan, K. D., Harris, J. W., Cartigny, P., & Thiemens, M. H. (2002). Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science, 298, 2369–2372.CrossRefGoogle Scholar
  31. Fedo, C. M., & Whitehouse, M. J. (2002). Metasomatic origin of quartz-pyroxene rock, Akilia, Greenland, and implications for Earth’s earliest life. Science, 296, 1448–1452.CrossRefGoogle Scholar
  32. Fuchs, G., Thauer, R., Ziegler, H., & Stichler, W. (1979). Carbon isotope fractionation by Methanobacterium thermoautotrophicum. Archives of Microbiology, 120, 135–139.CrossRefGoogle Scholar
  33. Gleadow, A. J. W. (1978). Anisotropic and variable track etching characteristics in natural sphenes. Nuclear Track Detection, 2, 105–117.CrossRefGoogle Scholar
  34. Griffin, W. L., McGregor, V. R., Nutman, A., Taylor, P. N., & Bridgwater, D. (1980). Early Archaean granulite-facies metamorphism south of Ameralik, West Greenland. Earth and Planetary Science Letters, 50, 59–74.CrossRefGoogle Scholar
  35. Grotzinger, J. P., & Rothman, D. H. (1996). An abiotic model for stromatolite morphogenesis. Nature, 383, 423–425.CrossRefGoogle Scholar
  36. Hayes, J. M., Des Marais, I. B., Lambert, H., Strauss, H., & Summons, R. E. (1992). Proterozoic biogeochemistry. In J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere (pp. 81–134). New York: Cambridge University Press.Google Scholar
  37. Hedges, S. B. (2009). Life. In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 89–98). Oxford: Oxford University Press.Google Scholar
  38. Hoefs, J., & Hoefs, J. (1980). Stable isotope geochemistry. Berlin: Springer.CrossRefGoogle Scholar
  39. Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from >4 Ga zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.CrossRefGoogle Scholar
  40. Hopkins, M., Harrison, T. M., & Manning, C. E. (2010). Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters, 298, 367–376.CrossRefGoogle Scholar
  41. Hopkins, M., Harrison, T. M., & Manning, C. E. (2012). Comment: Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth. Geology, 40, e281–e281.CrossRefGoogle Scholar
  42. Hourigan, J. K., Reiners, P. W., & Brandon, M. T. (2005). U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geochimica et Cosmochimica Acta, 69, 3349–3365.CrossRefGoogle Scholar
  43. House, C. H., Schopf, J. W., McKeegan, K. D., Coath, C. D., Harrison, T. M., & Stetter, K. O. (2000). Carbon isotopic composition of individual Precambrian microfossils. Geology, 28, 707–710.CrossRefGoogle Scholar
  44. Hunt, M. J. (1979). Petroleum geochemistry and geology. New York: W. H. Freeman and Company.Google Scholar
  45. Kanter, M. A. (1957). Diffusion of carbon atoms in natural graphite crystals. Physical Review, 107, 655–663.CrossRefGoogle Scholar
  46. Keppler, H., Wiedenbeck, M., & Shcheka, S. S. (2003). Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature, 424, 414–416.CrossRefGoogle Scholar
  47. Kerridge, J. F. (1985). Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta, 49, 1707–1714.CrossRefGoogle Scholar
  48. Krzycki, J. A., Kenealy, W. R., DeNiro, M. J., & Zeikus, J. G. (1987). Stable carbon isotope fractionation by Methanosarcina barkeri during methanogenesis from acetate, methanol, or carbon dioxide-hydrogen. Applied and Environmental Microbiology, 53, 2597–2599.CrossRefGoogle Scholar
  49. Lancet, M. S., & Anders, E. (1970). Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites. Science, 170, 980–982.CrossRefGoogle Scholar
  50. Lane, N., Allen, J. F., & Martin, W. (2010). How did LUCA make a living? Chemiosmosis in the origin of life. BioEssays, 32, 271–280.CrossRefGoogle Scholar
  51. Lepland, A., van Zuilen, M. A., Arrhenius, G., Whitehouse, M. J., & Fedo, C. M. (2005). Questioning the evidence for Earth’s earliest life—Akilia revisited. Geology, 33, 77–79.CrossRefGoogle Scholar
  52. Manning, C. E., Mojzsis, S. J., & Harrison, T. M. (2006). Geology, age and origin of supracrustal rocks at Akilia, West Greenland. American Journal of Science, 306, 303–366.CrossRefGoogle Scholar
  53. Marshall, M. (2019). Life’s dark ages. New Scientist, 241, 28–32.CrossRefGoogle Scholar
  54. Marty, B., Alexander, C. M. D., & Raymond, S. N. (2013). Primordial origins of Earth’s carbon. Reviews in Mineralogy and Geochemistry, 75, 149–181.CrossRefGoogle Scholar
  55. McCollom, T. M. (2013). Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Reviews in Mineralogy and Geochemistry, 75, 467–494.CrossRefGoogle Scholar
  56. McCollom, T. M., & Seewald, J. S. (2013). Serpentinites, hydrogen, and life. Elements, 9, 129–134.CrossRefGoogle Scholar
  57. McDonough, W. F., & Sun, S. S. (1995). The composition of the Earth. Chemical Geology, 120, 223–253.Google Scholar
  58. McGregor, V. R., & Mason, B. (1977). Petrogenesis and geochemistry of metabasaltic and metasedimentary enclaves in the Amıtsoq gneisses, West Greenland. American Mineralogist, 62, 887–904.Google Scholar
  59. McKeegan, K. D., Kudryavtsev, A. B., & Schopf, J. W. (2007). Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, West Greenland. Geology, 35, 591–594.CrossRefGoogle Scholar
  60. McMahon, S. (2019). Earth's earliest and deepest purported fossils may be iron-mineralized chemical gardens. Proceedings of the Royal Society B: Biological Sciences, 286(1916), 20192410.Google Scholar
  61. Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T., & Wilde, S. A. (2007). Hadean diamonds in zircon from Jack Hills Western Australia. Nature, 448, 917–920.CrossRefGoogle Scholar
  62. Mojzsis, S. J., & Harrison, T. M. (2002a). Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland). Earth and Planetary Science Letters, 202, 563–576.CrossRefGoogle Scholar
  63. Mojzsis, S. J., & Harrison, T. M. (2002b). Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science, 298, 917a.CrossRefGoogle Scholar
  64. Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., & Friend, C. R. L. (1996). Evidence for life on Earth by 3800 Myr. Nature, 384, 55–59.CrossRefGoogle Scholar
  65. Mojzsis, S. J., Harrison, T. M., Arrhenius, G., McKeegan, K. D., & Grove, M. (1999). Origin of life from apatite dating? Reply. Nature, 400, 127–128.CrossRefGoogle Scholar
  66. Moorbath, S. (2005). Palaeobiology: Dating earliest life. Nature, 434, 155–156.CrossRefGoogle Scholar
  67. Moorbath, S. (2009). The discovery of the Earth’s oldest rocks. Notes and Records of the Royal Society.Google Scholar
  68. Mueller, T., Watson, E. B., Trail, D., Wiedenbeck, M., Van Orman, J., & Hauri, E. H. (2014). Diffusive fractionation of carbon isotopes in γ-Fe: Experiment, models and implications for early solar system processes. Geochimica et Cosmochimica Acta, 127, 57–66.CrossRefGoogle Scholar
  69. Myers, J. S., & Crowley, J. L. (2000). Vestiges of life in the oldest Greenland rocks? A review of early Archean geology in the Godthåbsfjord region, and reappraisal of field evidence for >3850 Ma life on Akilia. Precambrian Research, 103, 101–124.CrossRefGoogle Scholar
  70. Neveu, M., Hays, L. E., Voytek, M. A., New, M. H., & Schulte, M. D. (2018). The ladder of life detection. Astrobiology, 18, 1375–1402.CrossRefGoogle Scholar
  71. Noffke, N., Christian, D., Wacey, D., & Hazen, R. M. (2013). Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology, 13, 1103–1124.CrossRefGoogle Scholar
  72. Nutman, A. P., & Friend, C. R. (2006). Petrography and geochemistry of apatites in banded iron formation, Akilia, W. Greenland: Consequences for oldest life evidence. Precambrian Research, 147, 100–106.CrossRefGoogle Scholar
  73. Nutman, A. P., McGregor, V. R., Friend, C. R. L., Bennett, V. C., & Kinny, P. D. (1996). The Itsaq Gneiss Complex of southern west Greenland; The world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambrian Research, 78, 1–39.CrossRefGoogle Scholar
  74. Nutman, A. P., Mojzsis, S. J., & Friend, C. R. (1997). Recognition of ≥3850 Ma water-lain sediments in West Greenland and their significance for the early Archaean Earth. Geochimica et Cosmochimica Acta, 61, 2475–2484.CrossRefGoogle Scholar
  75. Nutman, A. P., Bennett, V. C., Friend, C. R., Van Kranendonk, M. J., & Chivas, A. R. (2016). Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature, 537, 535–538.CrossRefGoogle Scholar
  76. Nutman, A. P., Bennett, V. C., Friend, C. R., Van Kranendonk, M. J., Rothacker, L., & Chivas, A. R. (2019). Cross-examining Earth’s oldest stromatolites: Seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenland) ~3700 Ma sedimentary rocks. Precambrian Research.
  77. Pearson, D. G., Canil, D., & Shirey, S. B. (2003). Mantle samples included in volcanic rocks: Xenoliths and diamonds. Treatise on Geochemistry (Elsevier, Amsterdam), 2, 171–275.CrossRefGoogle Scholar
  78. Pearson, V. K., Sephton, M. A., Franchi, I. A., Gibson, J. M., & Gilmour, I. (2006). Carbon and nitrogen in carbonaceous chondrites: Elemental abundances and stable isotopic compositions. Meteoritics & Planetary Science, 41, 1899–1918.CrossRefGoogle Scholar
  79. Petrov, A. S., Gulen, B., Norris, A. M., Kovacs, N. A., Bernier, C. R., Lanier, K. A., et al. (2015). History of the ribosome and the origin of translation. Proceedings of the National Academy of Sciences, 112, 15396–15401.CrossRefGoogle Scholar
  80. Pisani, D., & Liu, A. G. (2015). Animal evolution: Only rocks can set the clock. Current Biology, 25, R1079–R1081.CrossRefGoogle Scholar
  81. Preuss, A., Schauder, R., Fuchs, G., & Stichler, W. (1989). Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Zeitschrift für Naturforschung C, 44, 397–402.CrossRefGoogle Scholar
  82. Rasmussen, B., Fletcher, I. R., Muhling, J. R., Gregory, C. J., & Wilde, S. A. (2011). Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills Australia: Implications for the Hadean Earth. Geology, 39, 1143–1146.CrossRefGoogle Scholar
  83. Roeske, C. A., & O’Leary, M. H. (1984). Carbon isotope effects on the enzyme-catalyzed carboxylation of ribulose bisphosphate. Biochemistry, 23, 6275–6284.CrossRefGoogle Scholar
  84. Rosing, M. T. (1999). 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.CrossRefGoogle Scholar
  85. Sano, Y., Terada, K., Takahashi, Y., & Nutman, A. P. (1999). Origin of life from apatite dating? Nature, 400, 127–129.CrossRefGoogle Scholar
  86. Schidlowski, M. (2001). Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept. Precambrian Research, 106, 117–134.CrossRefGoogle Scholar
  87. Schidlowski, M., Hayes, J. M., & Kaplan, I. R. (1983). Isotopic inferences of ancient biochemistries: Carbon, sulfur, hydrogen, and nitrogen. In J. W. Schopf (Ed.), The Earth’s earliest biosphere (pp. 149–185). Princeton, New Jersey: Princeton University Press.Google Scholar
  88. Schopf, J. W. (1993). Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science, 260, 640–646.CrossRefGoogle Scholar
  89. Schopf, J. W. (2014). Geological evidence of oxygenic photosynthesis and the biotic response to the 2400–2200 Ma “great oxidation event”. Biochemistry (Moscow), 79, 165–177.CrossRefGoogle Scholar
  90. Schopf, J. W., Kitajima, K., Spicuzza, M. J., Kudryavtsev, A. B., & Valley, J. W. (2018). SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proceedings of the National Academy of Sciences, 115, 53–58.Google Scholar
  91. Schopf, J. W., & Packer, B. M. (1987). Early Archean (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona Group, Australia. Science, 237, 70–73.CrossRefGoogle Scholar
  92. Schwartz, J. H., & Maresca, B. (2006). Do molecular clocks run at all? A critique of molecular systematics. Biological Theory, 1, 357–371.CrossRefGoogle Scholar
  93. Sephton, M. A., Verchovsky, A. B., Bland, P. A., Gilmour, I., Grady, M. M., & Wright, I. P. (2003). Investigating the variations in carbon and nitrogen isotopes in carbonaceous chondrites. Geochimica et Cosmochimica Acta, 67, 2093–2108.CrossRefGoogle Scholar
  94. Shilobreeva, S., et al. (2011). Insights into C and H storage in the altered oceanic crust: Results from ODP/IODP Hole 1256D. Geochimica et Cosmochimica Acta, 75, 2237–2255.CrossRefGoogle Scholar
  95. Simmons, J. H. W. (2013). Radiation damage in graphite: International series of monographs in nuclear energy (Vol. 102). Elsevier.Google Scholar
  96. Stachel, T., Harris, J. W., & Muehlenbachs, K. (2009). Sources of carbon in inclusion bearing diamonds. Lithos, 112, 625–637.CrossRefGoogle Scholar
  97. Strauss, H., & Moore, T. B. (1992). The Proterozoic biosphere: A multidisciplinary study (J. W. Schopf & C. Klein, Eds.) (pp. 93–134). New York: Cambridge University Press.Google Scholar
  98. Tashiro, T., Ishida, A., Hori, M., Igisu, M., Koike, M., Méjean, P., et al. (2017). Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature, 549, 516–517.CrossRefGoogle Scholar
  99. Ueno, Y., Isozaki, Y., Yurimoto, H., & Maruyama, S. (2001). Carbon isotopic signatures of individual Archean microfossils (?) from Western Australia. International Geology Review, 43, 196–212.CrossRefGoogle Scholar
  100. Ueno, Y., Yoshioka, H., Maruyama, S., & Isozaki, Y. (2004). Carbon isotopes and petrography of kerogens in ~3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia1. Geochimica et Cosmochimica Acta, 68, 573–589.CrossRefGoogle Scholar
  101. Vacher, L. G., Marrocchi, Y., Villeneuve, J., Verdier-Paoletti, M. J., & Gounelle, M. (2017). Petrographic and C & O isotopic characteristics of the earliest stages of aqueous alteration of CM chondrites. Geochimica et Cosmochimica Acta, 213, 271–290.CrossRefGoogle Scholar
  102. Van Zuilen, M. A., Lepland, A., & Arrhenius, G. (2002). Reassessing the evidence for the earliest traces of life. Nature, 418, 627–630.CrossRefGoogle Scholar
  103. Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J., & Brasier, M. D. (2011). Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience, 4, 698–701.CrossRefGoogle Scholar
  104. Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., et al. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1, 16116.CrossRefGoogle Scholar
  105. Whitehouse, M. J., & Kamber, B. S. (2004). Assigning dates to thin gneissic veins in high-grade metamorphic terranes: A cautionary tale from Akilia, southwest Greenland. Journal of Petrology, 46, 291–318.CrossRefGoogle Scholar
  106. Whitehouse, M. J., Kamber, B. S., & Moorbath, S. (1999). Age significance of U-Th–Pb zircon data from early Archaean rocks of West Greenland—A reassessment based on combined ion-microprobe and imaging studies. Chemical Geology, 160, 201–224.CrossRefGoogle Scholar
  107. Whitehouse, M. J., Dunkley, D. J., Kusiak, M. A., & Wilde, S. A. (2019). On the true antiquity of Eoarchean chemofossils—Assessing the claim for Earth’s oldest biogenic graphite in the Saglek Block of Labrador. Precambrian Research, 323.
  108. Wickman, F. E. (1952). Variations in the relative abundance of the carbon isotopes in plants. Geochimica et Cosmochimica Acta, 2, 243–254.CrossRefGoogle Scholar
  109. Woese, C. (1998). The universal ancestor. Proceedings of the National Academy of Sciences, 95, 6854–6859.CrossRefGoogle Scholar
  110. Zuckerkandl, E., & Pauling, L. (1965). Molecules as documents of evolutionary history. Journal of Theoretical Biology, 8, 357–366.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth, Planetary and Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations