Advertisement

Hadean Earth pp 217-248 | Cite as

Could the Hadean Eon Have Been Habitable?

  • T. Mark HarrisonEmail author
Chapter
  • 100 Downloads

Abstract

Given the absence of a macroscopic Hadean rock record, evaluating terrestrial habitability is largely a thought experiment, but data from Hadean zircons can provide some constraints. We are certain that life as we know it would not be possible without four requirements; soluble bioactive elements (carbon, hydrogen, oxygen, nitrogen, sulfur and phosphorous), free energy, liquid water, and time. Beyond these essential ingredients, there is broad agreement that there are ten secondary factors that separate us from the other, uninhabited terrestrial planets and maintain our planet’s homeostasis. They are: (1) a galactic and planetary sanctuary for life; (2) liquid water at the planetary surface to mediate biochemistry and efficiently cool the planet; (3) dissolved water in the deep planetary interior to enhance mantle circulation and catalyze the eclogite transition; (4) a broadly solar chemical composition to provide sufficient metallicity for a stable surface platform; (5) sufficient planetary mass to retain an atmosphere and heat; (6) planetary satellite(s) to stabilize climate zones; (7) extra-planetary impactors to introduce organic building blocks and water and to create satellites; (8) long-term interior heat generation to maintain mantle circulation and the geodynamo; (9) a self-sustaining dynamo to protect the atmosphere is erosion; and (10) a mechanism to recycle surface carbon into the interior and back. Evaluating how these various factors interact is complicated but our speculations can be guided by inferences from Hadean zircon geochemistry which potentially bear on six of the ten ingredients for life—the presence of surface and interior water, the role of impacts on early Earth, internal heat generation, surface recycling, and the existence of a Hadean geodynamo. Knowledge of the geochemistry and inclusion population of Hadean zircons also permits constraints to be placed on whether mineral phases and trace elements key to biopoiesis were present during the Hadean eon.

References

  1. Abe, Y. (2007). Behavior of water during terrestrial planet formation. Geochimica et Cosmochimica Acta, 71, A2.CrossRefGoogle Scholar
  2. Abramov, O., & Mojzsis, S. J. (2009). Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature, 459, 419–422.CrossRefGoogle Scholar
  3. Adamala, K., Anella, F., Wieczorek, R., Stano, P., Chiarabelli, C., & Luisi, P. L. (2014). Open questions in origin of life: Experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach. Computational and Structural Biotechnology Journal, 9, e201402004.CrossRefGoogle Scholar
  4. Ahrens, T. J., & Schubert, G. (1975). Gabbro-eclogite reaction rate and its geophysical significance. Reviews of Geophysics, 13, 383–400.CrossRefGoogle Scholar
  5. Alexander, C. M. D., Bowden, R., Fogel, M. L., Howard, K. T., Herd, C. D. K., & Nittler, L. R. (2012). The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science, 337, 721–723.CrossRefGoogle Scholar
  6. Alexander, C. M. D., McKeegan, K. D., & Altwegg, K. (2018). Water reservoirs in small planetary bodies: Meteorites, asteroids, and comets. Space Science Reviews, 214(36), 1–47.Google Scholar
  7. Altwegg, K., Balsiger, H., Bar-Nun, A., Berthelier, J. J., Bieler, A., Bochsler, P., et al. (2015). 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science, 347.  https://doi.org/10.1126/science.1261952.
  8. Alvarez, W., & Asaro, F. (1990). An extraterrestrial impact. Scientific American, 263, 78–84.CrossRefGoogle Scholar
  9. Anderson, D. L. (1982). Hotspots, polar wander, Mesozoic convection and the geoid. Nature, 297, 391–393.CrossRefGoogle Scholar
  10. Anglada-Escudé, G., Amado, P. J., Barnes, J., Berdinas, Z. M., Butler, R. P., Coleman, G. A., et al. (2016). A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature, 536, 437–440.CrossRefGoogle Scholar
  11. Arrhenius, S. (1908). Worlds in the making: The evolution of the universe. Harper and Brothers.Google Scholar
  12. Aulbach, S., & Stagno, V. (2016). Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology, 44, 751–754.CrossRefGoogle Scholar
  13. Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. L. (2015). Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proceedings of the National Academy of Sciences, 112(47), 14518–14521.Google Scholar
  14. Bell, E. A., Boehnke, P., Harrison, T. M., & Wielicki, M. M. (2018). Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477, 151–160.CrossRefGoogle Scholar
  15. Betts, H. C., Puttick, M. N., Clark, J. W., Williams, T. A., Donoghue, P. C., & Pisani, D. (2018). Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nature Ecology & Evolution, 2, 1556–1562.Google Scholar
  16. Biggin, A. J., de Wit, M. J., Langereis, C. G., Zegers, T. E., Voûte, S., Dekkers, M. J., & Drost, K. (2011). Palaeomagnetism of Archaean rocks of the Onverwacht Group, Barberton Greenstone Belt (southern Africa): Evidence for a stable and potentially reversing geomagnetic field at ca. 3.5 Ga. Earth and Planetary Science Letters, 302, 314–328.Google Scholar
  17. Brin, G. D. (1983). The great silence—The controversy concerning extraterrestrial intelligent life. Quarterly Journal of the Royal Astronomical Society, 24, 283–309.Google Scholar
  18. Bryan, M. L., Knutson, H. A., Howard, A. W., Ngo, H., Batygin, K., Crepp, J. R., et al. (2016). Statistics of long period gas giant planets in known planetary systems. The Astrophysical Journal, 821, 89.CrossRefGoogle Scholar
  19. Buffett, B. A. (2003). The thermal state of Earth’s core. Science, 299, 1675–1677.CrossRefGoogle Scholar
  20. Carter, B. (1983). The anthropic principle and its implications for biological evolution. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 310, 347–363.CrossRefGoogle Scholar
  21. Castelle, C. J., & Banfield, J. F. (2018). Major new microbial groups expand diversity and alter our understanding of the tree of life. Cell, 172, 1181–1197.CrossRefGoogle Scholar
  22. Chambers, J. (2004). Planetary accretion in the inner solar system. Earth and Planetary Science Letters, 223, 241–252.CrossRefGoogle Scholar
  23. Chopra, A., & Lineweaver, C. H. (2016). The case for a Gaian bottleneck: The biology of habitability. Astrobiology, 16, 7–22.CrossRefGoogle Scholar
  24. Cleaves, H. J., Chalmers, J. H., Lazcano, A., Miller, S. L., & Bada, J. L. (2008). A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Origins of Life and Evolution of Biospheres, 38, 105–115.CrossRefGoogle Scholar
  25. Commeyras, A., Collet, H., Boiteau, L., Taillades, J., Vandenabeele-Trambouze, O., Cottet, H., et al. (2002). Prebiotic synthesis of sequential peptides on the Hadean beach by a molecular engine working with nitrogen oxides as energy sources. Polymer International, 51, 661–665.CrossRefGoogle Scholar
  26. Conselice, C. J., Wilkinson, A., Duncan, K., & Mortlock, A. (2016). The evolution of galaxy number density at z < 8 and its implications. The Astrophysical Journal, 830, 83–93.CrossRefGoogle Scholar
  27. Cramer, J. G. (1986). The pump of evolution. Analog Science Fiction & Fact Magazine, 106, 124–127.Google Scholar
  28. Crick, F. H. (1981). Life itself: Its origin and nature (p. 192). New York: Simon and Schuster.Google Scholar
  29. Crick, F. H., & Orgel, L. E. (1973). Directed panspermia. Icarus, 19, 341–346.CrossRefGoogle Scholar
  30. Darling, D. (2001). Life everywhere: The maverick science of astrobiology (p. 206). New York, NY: Basic Books.Google Scholar
  31. Darwin, C. R. (1871). The descent of man and selection in relation to sex (p. 589). London: John Murray.CrossRefGoogle Scholar
  32. Davies, J. H., & Davies, D. R. (2009). Earth’s surface heat flux. Solid Earth Discussions, 1, 1–45.CrossRefGoogle Scholar
  33. de Montserrat Navarro, A., Morgan, J. P., Vannucchi, P., Connolly, J. A. (2016). Has Earth’s plate tectonics led to rapid core cooling? AGU Fall Meeting Abstracts.Google Scholar
  34. Dick, H. J., Lin, J., & Schouten, H. (2003). An ultraslow-spreading class of ocean ridge. Nature, 426, 405–412.CrossRefGoogle Scholar
  35. Dole, S. H. (1964). Habitable planets for man. New York: Blaisdell Publ. Co.Google Scholar
  36. Drake, M. J. (2005). Origin of water in the terrestrial planets. Meteoritics & Planetary Science, 40, 519–527.CrossRefGoogle Scholar
  37. Drake, F., & Sobel, D. (1992). Is anyone out there?: The scientific search for extraterrestrial intelligence. Delacorte Press.Google Scholar
  38. Dye, S. T. (2012). Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics, 50, 2012RG000400, 19 pp.Google Scholar
  39. Elkins-Tanton, L. T. (2008). Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth and Planetary Science Letters, 271, 181–191.CrossRefGoogle Scholar
  40. Elsasser, W. M. (1958). The earth as a dynamo. Scientific American, 198, 44–49.CrossRefGoogle Scholar
  41. Farquhar, J., Bao, H., & Thiemens, M. (2000). Atmospheric influence of Earth’s earliest sulfur cycle. Science, 289, 756–758.CrossRefGoogle Scholar
  42. Fei, H., Yamazaki, D., Sakurai, M., Miyajima, N., Ohfuji, H., Katsura, T., et al. (2017). A nearly water-saturated mantle transition zone inferred from mineral viscosity. Science Advances, 3, e1603024.CrossRefGoogle Scholar
  43. Fernández, Y. R. (2003). The nucleus of comet Hale-Bopp (C/1995 O1): Size and activity. In International Astronomical Union Colloquium (Vol. 186, pp. 3–25). Cambridge University Press.Google Scholar
  44. Forsyth, D., & Uyeda, W. S. (1975). On the relative importance of the driving forces of plate motion. Geophysical Journal of the Royal Astronomical Society, 4, 163–200.CrossRefGoogle Scholar
  45. France-Lanord, C., & Derry, L. A. (1997). Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature, 390, 65–67.CrossRefGoogle Scholar
  46. Frank, A., & Sullivan, W. T. (2016). A new empirical constraint on the prevalence of technological species in the universe. Astrobiology, 16, 359–362.CrossRefGoogle Scholar
  47. Frank, E. A., Meyer, B. S., & Mojzsis, S. J. (2014). A radiogenic heating evolution model for cosmochemically Earth-like exoplanets. Icarus, 243, 274–286.CrossRefGoogle Scholar
  48. Genda, H., & Abe, Y. (2005). Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature, 433, 842–844.CrossRefGoogle Scholar
  49. Gonzalez, G., Brownlee, D., & Ward, P. (2001). The galactic habitable zone: Galactic chemical evolution. Icarus, 152, 185–200.CrossRefGoogle Scholar
  50. Grew, E. S., Bada, J. L., & Hazen, R. M. (2011). Borate minerals and origin of the RNA world. Origins of Life and Evolution of Biospheres, 41, 307–316.CrossRefGoogle Scholar
  51. Griffith, E. J., Ponnamperuma, C., & Gabel, N. W. (1977). Phosphorus, a key to life on the primitive earth. Origins of Life and Evolution of Biospheres, 8, 1–85.Google Scholar
  52. Griggs, D. T., & Blacic, J. D. (1965). Quartz: Anomalous weakness of synthetic crystals. Science, 147, 292–295.CrossRefGoogle Scholar
  53. Grossman, L. (1972). Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619.CrossRefGoogle Scholar
  54. Gubbins, D., Alfe, D., Masters, G., Price, G. D., & Gillan, M. (2004). Gross thermodynamics of two-component core convection. Geophysical Journal International, 157, 1407–1414.CrossRefGoogle Scholar
  55. Haldane, J. B. S. (1929). The orgin of life. Rationalist Annual, 3, 3–10.Google Scholar
  56. Hamano, K., Abe, Y., & Genda, H. (2013). Emergence of two types of terrestrial planet on solidification of magma ocean. Nature, 497, 607–610.CrossRefGoogle Scholar
  57. Harrison, T. M., Copeland, P., Kidd, W. S. F., & Yin, A. N. (1992). Raising Tibet. Science, 255, 1663–1670.CrossRefGoogle Scholar
  58. Hart, M. H. (1975). Explanation for the absence of extraterrestrials on earth. Quarterly Journal of the Royal Astronomical Society, 16, 128–135.Google Scholar
  59. Hart, M. H. (1979). Habitable zones about main sequence stars. Icarus, 37, 351–357.CrossRefGoogle Scholar
  60. Hartogh, P., Lis, D. C., Bockelée-Morvan, D., de Val-Borro, M., Biver, N., Küppers, M., et al. (2011). Ocean-like water in the Jupiter-family comet 103P/Hartley 2. Nature, 478, 218.CrossRefGoogle Scholar
  61. Hazen, R. M. (2013). Paleomineralogy of the Hadean Eon: A preliminary species list. American Journal of Science, 313, 807–843.CrossRefGoogle Scholar
  62. Hazen, R. M., Gagné, O. C., Liu, C., Morrison, S. M., & Runyon, S. E. (2019). Mineral environments of the Hadean Eon: Implications for Earth’s geochemical evolution and the origins of life. In Abstracts, 2019 Astrobiology Conference.Google Scholar
  63. Hevey, P. J., & Sanders, I. S. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics & Planetary Science, 41, 95–106.CrossRefGoogle Scholar
  64. Hirschmann, M. M. (2006). Water, melting, and the deep Earth H2O cycle. Annual Review of Earth and Planetary Sciences, 34, 629–653.CrossRefGoogle Scholar
  65. Hirth, G., & Kohlstedt, D. L. (1996). Water in the oceanic upper mantle: Implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters, 144, 93–108.CrossRefGoogle Scholar
  66. Hoffman, P. F., Kaufman, A. J., Halverson, G. P., & Schrag, D. P. (1998). A neoproterozoic snowball Earth. Science, 281, 1342–1346.CrossRefGoogle Scholar
  67. Höning, D., Hansen-Goos, H., Airo, A., & Spohn, T. (2014). Biotic vs. abiotic Earth: A model for mantle hydration and continental coverage. Planetary and Space Science, 98, 5–13.CrossRefGoogle Scholar
  68. Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from >4 Ga zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.CrossRefGoogle Scholar
  69. Horner, J., & Jones, B. W. (2009). Jupiter—Friend or foe? II: The Centaurs. International Journal of Astrobiology, 8, 75–80.CrossRefGoogle Scholar
  70. Hubble, E. (1926). Extragalactic nebulae. Astrophysical Journal, 64, 321–369.CrossRefGoogle Scholar
  71. Hunten, D. M., & Donahue, T. M. (1976). Hydrogen loss from the terrestrial planets. Annual Review of Earth and Planetary Sciences, 4, 265–292.CrossRefGoogle Scholar
  72. Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293–305.Google Scholar
  73. Isson, T. T., & Planavsky, N. J. (2018). Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature, 560, 471.CrossRefGoogle Scholar
  74. Ito, K., & Kennedy, G. C. (1967). Melting and phase relations in a natural peridotite to 40 kilobars. American Journal of Science, 265, 519–538.CrossRefGoogle Scholar
  75. Ito, K., & Kennedy, G. C. (1970). The fine structure of the basalt-eclogite transition. Mineralogical Society of America Special Papers, 3, 77–83.Google Scholar
  76. Kasting, J. (2010). How to find a habitable planet. Princeton University Press.Google Scholar
  77. Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. (1993). Habitable zones around main sequence stars. Icarus, 101, 108–128.CrossRefGoogle Scholar
  78. Khurana, K. K., Kivelson, M. G., Stevenson, D. J., Schubert, G., Russell, C. T., Walker, R. J., et al. (1998). Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395, 77–780.CrossRefGoogle Scholar
  79. Kirchner, J. W. (1991). The Gaia hypotheses: Are they testable? Are they useful? In S. Schneider (Ed.), Scientists on Gaia. Cambridge, MA: MIT Press.Google Scholar
  80. Kite, E. S., Gaidos, E., & Manga, M. (2011). Climate instability on tidally locked exoplanets. The Astrophysical Journal, 743, 41 (12 pp.).Google Scholar
  81. Koga, T., & Naraoka, H. (2017). A new family of extraterrestrial amino acids in the Murchison meteorite. Scientific Reports, 7.Google Scholar
  82. Kopparapu, R. K., Ramirez, R. M., SchottelKotte, J., Kasting, J. F., Domagal-Goldman, S., & Eymet, V. (2014). Habitable zones around main-sequence stars: Dependence on planetary mass. The Astrophysical Journal Letters, 787(L29), 1–6.Google Scholar
  83. Korenaga, J. (2013). Initiation and evolution of plate tectonics on Earth: Theories and observations. Annual Review of Earth and Planetary Sciences, 41, 117–151.Google Scholar
  84. Kruger, K., Grabowski, P. J., Zaug, A. J., Sands, J., Gottschling, D. E., & Cech, T. R. (1982). Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell, 31, 147–157.CrossRefGoogle Scholar
  85. Labrosse, S., Poirier, J. P., & Le Mouël, J. L. (2001). The age of the inner core. Earth and Planetary Science Letters, 190, 111–123.CrossRefGoogle Scholar
  86. Labrosse, S., Hernlund, J. W., & Coltice, N. (2007). A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature, 450, 866–869.CrossRefGoogle Scholar
  87. Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y. N., & Tian, F. (2008). Atmospheric escape and evolution of terrestrial planets and satellites. Space Science Reviews, 139, 399–436.CrossRefGoogle Scholar
  88. Lammer, H., Kislyakova, K. G., Odert, P., Leitzinger, M., Schwarz, R., Pilat-Lohinger, E., Kulikov, Y. N., Khodachenko, M. L., Güdel, M., & Hanslmeier, A. (2011). Pathways to earth-like atmospheres. Origins of Life and Evolution of Biospheres, 41(6), 503–522.Google Scholar
  89. Lammer, H., Selsis, F., Chassefière, E., Breuer, D., Grießmeier, J. M., Kulikov, Y. N., et al. (2010). Geophysical and atmospheric evolution of habitable planets. Astrobiology, 10, 45–68.CrossRefGoogle Scholar
  90. Laskar, J., & Robutel, P. (1993). The chaotic obliquity of the planets. Nature, 361, 608–612.CrossRefGoogle Scholar
  91. Lathe, R. (2004). Fast tidal cycling and the origin of life. Icarus, 168, 18–22.CrossRefGoogle Scholar
  92. Lathe, R. (2006). Early tides: Response to Varga et al. Icarus, 180, 277–280.Google Scholar
  93. Lineweaver, C. H. (2001). An estimate of the age distribution of terrestrial planets in the universe: Quantifying metallicity as a selection effect. Icarus, 151, 307–313.CrossRefGoogle Scholar
  94. Lineweaver, C. H., & Chopra, A. (2012). What can life on Earth tell us about life in the universe? In Genesis—In the beginning (pp. 799–815). Dordrecht: Springer.Google Scholar
  95. Lineweaver, C. H., & Davis, T. M. (2002). Does the rapid appearance of life on Earth suggest that life is common in the universe? Astrobiology, 2, 293–304.CrossRefGoogle Scholar
  96. Lineweaver, C. H., Fenner, Y., & Gibson, B. K. (2004). The galactic habitable zone and the age distribution of complex life in the Milky Way. Science, 303, 59–62.CrossRefGoogle Scholar
  97. Lis, D. C., Biver, N., Bockelée-Morvan, D., Hartogh, P., Bergin, E. A., Blake, G. A., et al. (2013). A Herschel study of D/H in water in the Jupiter-family comet 45P/Honda-Mrkos-Pajdušáková and prospects for D/H measurements with CCAT. The Astrophysical Journal Letters, 774, L3.CrossRefGoogle Scholar
  98. Lis, D. C., Bockelée-Morvan, D., Güsten, R., Biver, N., Stutzki, J., Delorme, Y., et al. (2019). Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets. Astronomy & Astrophysics, 625, L5.CrossRefGoogle Scholar
  99. Lissauer, J. J., Barnes, J. W., & Chambers, J. E. (2012). Obliquity variations of a moonless Earth. Icarus, 217, 77–87.CrossRefGoogle Scholar
  100. Lodders, K., Palme, H., & Gail, H. P. (2010). Solar system abundances of the elements. In Principles and perspectives in cosmochemistry (pp. 379–417).Google Scholar
  101. Lovelock, J. E., & Margulis, L. (1974). Atmospheric homeostasis by and for the biosphere: The Gaia hypothesis. Tellus, 26, 2–10.CrossRefGoogle Scholar
  102. Lyubetskaya, T., & Korenaga, J. (2007). Chemical composition of Earth’s primitive mantle and its variance: 1. Method and results. Journal of Geophysical Research, 112, B03211.  https://doi.org/10.1029/2005JB004223.CrossRefGoogle Scholar
  103. Macdonald, K. C., Becker, K., Spiess, F. N., & Ballard, R. D. (1980). Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth and Planetary Science Letters, 48, 1–7.CrossRefGoogle Scholar
  104. Marty, B. (2012). The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313, 56–66.Google Scholar
  105. Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378, 355–359.CrossRefGoogle Scholar
  106. McDonough, W. F., & Sun, S. S. (1989). The composition of the Earth. Chemical Geology, 120, 223–253.CrossRefGoogle Scholar
  107. McKenzie, D. P. (1970). Temperature and potential temperature beneath island arcs. Tectonophysics, 10, 357–366.CrossRefGoogle Scholar
  108. Miller, S. L., & Urey, H. C. (1959). Origin of life. Science, 130, 1622–1624.CrossRefGoogle Scholar
  109. Moore, W. B., Lenardic, A., Jellinek, A. M., Johnson, C. L., Goldblatt, C., & Lorenz, R. D. (2017). How habitable zones and super-Earths lead us astray. Nature Astronomy, 1.  https://doi.org/10.1038/s41550-017-0043.
  110. Morrison, S., Runyon, S., & Hazen, R. (2018). The paleomineralogy of the Hadean Eon revisited. Life, 8, 64.CrossRefGoogle Scholar
  111. Mulders, G. D., Pascucci, I., & Apai, D. (2015). A stellar-mass-dependent drop in planet occurrence rates. Astrophysical Journal, 798, 112, 18 pp.Google Scholar
  112. Nakagawa, T., Nakakuki, T., & Iwamori, H. (2015). Water circulation and global mantle dynamics: Insight from numerical modeling. Geochemistry, Geophysics, Geosystems, 16, 1449–1464.CrossRefGoogle Scholar
  113. Neveu, M., Kim, H. J., & Benner, S. A. (2013). The “strong” RNA world hypothesis: Fifty years old. Astrobiology, 13, 391–403.CrossRefGoogle Scholar
  114. Nicklas, R. W., Puchtel, I. S., Ash, R. D., Piccoli, P. M., Hanski, E., Nisbet, E. G., et al. (2019). Secular mantle oxidation across the Archean-Proterozoic boundary: Evidence from V partitioning in komatiites and picrites. Geochimica et Cosmochimica Acta, 250, 49–75.CrossRefGoogle Scholar
  115. Nimmo, F., & Stevenson, D. J. (2000). Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. Journal of Geophysical Research: Planets, 105, 11969–11979.CrossRefGoogle Scholar
  116. Nimmo, F., Price, G. D., Brodholt, J., & Gubbins, D. (2004). The influence of potassium on core and geodynamo evolution. Geophysical Journal International, 156, 363–376.CrossRefGoogle Scholar
  117. O’Neill, C., & Debaille, V. (2014). The evolution of Hadean-Eoarchaean geodynamics. Earth and Planetary Science Letters, 406, 49–58.CrossRefGoogle Scholar
  118. O’Neill, C., & Lenardic, A. (2007). Geological consequences of super-sized Earths. Geophysical Research Letters, 34.  https://doi.org/10.1029/2007gl030598.
  119. O’Rourke, J. G., & Stevenson, D. J. (2016). Powering Earth’s dynamo with magnesium precipitation from the core. Nature, 529, 387–389.Google Scholar
  120. Oparin, A. I. (1957). The origin of life on the Earth. London: Oliver and Boyd.Google Scholar
  121. Pearson, D. G., Brenker, F. E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., et al. (2014). Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224.CrossRefGoogle Scholar
  122. Piro, A. L. (2018). Exoplanets torqued by the combined tides of a moon and parent star. Astronomical Journal, 156, 54, 10 pp.Google Scholar
  123. Planavsky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., et al. (2010). The evolution of the marine phosphate reservoir. Nature, 467, 1088–1090.CrossRefGoogle Scholar
  124. Podolak, M., & Zucker, S. (2004). A note on the snow line in protostellar accretion disks. Meteoritics & Planetary Science, 39, 1859–1868.CrossRefGoogle Scholar
  125. Pozzo, M., Davies, C., Gubbins, D., & Alfe, D. (2012). Thermal and electrical conductivity of iron at Earth’s core conditions. Nature, 485, 355–358.CrossRefGoogle Scholar
  126. Ratner, M. I., & Walker, J. C. (1972). Atmospheric ozone and the history of life. Journal of the Atmospheric Sciences, 29, 803–808.CrossRefGoogle Scholar
  127. Raymond, S. N., Armitage, P. J., Moro-Martín, A., Booth, M., Wyatt, M. C., Armstrong, J. C., et al. (2011). Debris disks as signposts of terrestrial planet formation. Astronomy & Astrophysics, 530(A62), 1–23.Google Scholar
  128. Righter, K., & Drake, M. J. (1999). Effect of water on metal-silicate partitioning of siderophile elements a high pressure and temperature terrestrial magma ocean and core formation. Earth and Planetary Science Letters, 171, 383–399.CrossRefGoogle Scholar
  129. Ringwood, A. E. (1962). A model for the upper mantle. Journal of Geophysical Research, 67, 857–867.CrossRefGoogle Scholar
  130. Ringwood, A. E. (1989). Significance of the terrestrial Mg/Si ratio. Earth and Planetary Science Letters, 95, 1–7.CrossRefGoogle Scholar
  131. Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64.Google Scholar
  132. Sagan, C., & Drake, F. (1975). The search for extraterrestrial intelligence. Scientific American, 232, 80–89.CrossRefGoogle Scholar
  133. Schopf, J. W. (Ed.). (2002). Life’s origin: The beginnings of biological evolution. University of California Press.Google Scholar
  134. Sclater, J., Jaupart, C., & Galson, D. (1980). The heat flow through oceanic and continental crust and the heat loss of the Earth. Reviews of Geophysics, 18, 269–311.CrossRefGoogle Scholar
  135. Shock, E., & Canovas, P. (2010). The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids, 10, 61–192.Google Scholar
  136. Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. Journal of Geophysical Research, 105, 17563–17578.CrossRefGoogle Scholar
  137. Sleep, N. H., & Zahnle, K. (1998). Refugia from asteroid impacts on early Mars and the early Earth. Journal of Geophysical Research, 103, 28529–28544.CrossRefGoogle Scholar
  138. Sleep, N. H., Zahnle, K. J., Kasting, J. F., & Morowitz, H. J. (1989). Annihilation of ecosystems by large asteroid impacts on the early earth. Nature, 342, 139–142.CrossRefGoogle Scholar
  139. Solomon, S. C. (1979). Formation, history and energetics of cores in the terrestrial planets. Physics of the Earth and Planetary Interiors, 19, 168–182.CrossRefGoogle Scholar
  140. Spiegel, D. S., & Turner, E. L. (2012). Bayesian analysis of the astrobiological implications of life’s early emergence on Earth. Proceedings of the National Academy of Sciences, 109, 395–400.CrossRefGoogle Scholar
  141. Stern, R. J. (2016). Is plate tectonics needed to evolve technological species on exoplanets? Geoscience Frontiers, 7, 573–580.CrossRefGoogle Scholar
  142. Tang, F., Taylor, R. J. M., Einsle, J. F., Borlina, C. S., Fu, R. R., Weiss, B. P., Williams, H. M., Williams, W., Nagy, L., Midgley, P., Lima, E. A., Bell, E. A., Harrison, T. M., & Harrison, R. (2019). Secondary magnetite in ancient zircon precludes analysis of a Hadean-Paleoarchean geodynamo. Proceedings of the National Academy of Sciences, 116, 407–412.Google Scholar
  143. Tarduno, J. A., Blackman, E. G., & Mamajek, E. E. (2014). Detecting the oldest geodynamo and attendant shielding from the solar wind: Implications for habitability. Physics of the Earth and Planetary Interiors, 233, 68–87.CrossRefGoogle Scholar
  144. Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., & Bono, R. K. (2015). A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349, 521–524.CrossRefGoogle Scholar
  145. Tipler, F. J. (1981). A brief history of the extraterrestrial intelligence concept. Quarterly Journal of the Royal Astronomical Society, 22, 133–145.Google Scholar
  146. Todd, V. R., Shaw, S. E., & Hammarstrom, J. M. (2003). Cretaceous plutons of the Peninsular Ranges batholith, San Diego and westernmost Imperial Counties, California: Intrusion across a Late Jurassic continental margin. Geological Society of America Special Paper, 374, 185–235.Google Scholar
  147. Trail, D., Buettner, J., Chowdhury, W., Bell, E. A., & Liu, M.-C. (2017). Decoding old zircons. In Before life: The chemical, geological and dynamical setting for the emergence of an RNA world (pp. 29–30). Workshop, Boulder, CO, October 9–12.Google Scholar
  148. Trail, D., Watson, E. B., & Tailby, N. D. (2011). The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480(7375), 79–82.Google Scholar
  149. Turcotte, D. L. (1993). An episodic hypothesis for Venusian tectonics. Journal of Geophysical Research: Planets, 98, 17061–17068.CrossRefGoogle Scholar
  150. Urey, H. C. (1952). The planets: Their origin and development (p. 245). New Haven: Yale University Press.Google Scholar
  151. Valencia, D., & O’Connell, R. J. (2009). Convection scaling and subduction on Earth and super-Earths. Earth and Planetary Science Letters, 286, 492–502.CrossRefGoogle Scholar
  152. Valencia, D., O’Connell, R. J., & Sasselov, D. D. (2007). Inevitability of plate tectonics on super-Earths. The Astrophysical Journal Letters, 670, L45.CrossRefGoogle Scholar
  153. Van Heck, H. J., & Tackley, P. J. (2011). Plate tectonics on super-Earths: Equally or more likely than on Earth. Earth and Planetary Science Letters, 310, 252–261.CrossRefGoogle Scholar
  154. Vidotto, A. A., Jardine, M., Morin, J., Donati, J. F., Lang, P., & Russell, A. J. B. (2013). Effects of M dwarf magnetic fields on potentially habitable planets. Astronomy & Astrophysics, 557, A67 (11 pp.).Google Scholar
  155. Wächtershäuser, G. (1990). Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences, 87, 200–204.CrossRefGoogle Scholar
  156. Waltham, J. (2014). Lucky planet (p. 198). New York, NY: Basic Books (Perseus).Google Scholar
  157. Ward, P. D., & Brownlee, D. (2000). Rare earth: Why complex life is uncommon in the universe. New York: Copernicus Books.Google Scholar
  158. Weiss, B. P., Maloof, A. C., Tailby, N., Ramezani, J., Fu, R. R., Hanus, V., et al. (2015). Pervasive remagnetization of detrital zircon host rocks in the Jack Hills Western Australia and implications for records of the early geodynamo. Earth and Planetary Science Letters, 430, 115–128.CrossRefGoogle Scholar
  159. Weiss, B. P., Maloof, A. C., Harrison, T. M., Swanson-Hysell, N. L., Fu, R. R., Kirschvink, J. L., et al. (2016). Reply to comment on “Pervasive remagnetization of detrital zircon host rocks in the Jack Hills, Western Australia and implications for records of the early dynamo”. Earth and Planetary Science Letters, 450, 409–412.CrossRefGoogle Scholar
  160. Weiss, B. P., Fu, R. R., Einsle, J. F., Glenn, D. R., Kehayias, P., Bell, E. A., et al. (2018). Secondary magnetic inclusions in detrital zircons from the Jack Hills, Western Australia, and implications for the origin of the geodynamo. Geology, 46, 427–430.CrossRefGoogle Scholar
  161. Wetherill, G. W. (1980). Formation of the terrestrial planets. Annual Review of Astronomy and Astrophysics, 18, 77–113.CrossRefGoogle Scholar
  162. Wetherill, G. W. (1985). Asteroidal source of ordinary chondrites. Meteoritics, 20, 1–22.CrossRefGoogle Scholar
  163. Wetherill, G. W. (1994). Possible consequences of absence of “Jupiters “in planetary systems. In Planetary systems: Formation, evolution, and detection (pp. 23–32). Dordrecht: Springer.Google Scholar
  164. White, A. J. R., & Chappell, B. W. (1977). Ultrametamorphism and granitoid genesis. Tectonophysics, 43, 7–22.CrossRefGoogle Scholar
  165. Woese, C. R., Kandler, O., & Wheelis, M. L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences, 87, 4576–4579.CrossRefGoogle Scholar
  166. Woo, J. M. Y., Brasser, R., Matsumura, S., Mojzsis, S. J., & Ida, S. (2018). The curious case of Mars’ formation. Astronomy & Astrophysics, 617, A17.CrossRefGoogle Scholar
  167. Zeebe, R. E. (2012). History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification. Annual Review of Earth and Planetary Sciences, 40, 141–165.CrossRefGoogle Scholar
  168. Zharkov, V. N. (2000). On the history of the lunar orbit. Solar System Research, 34, 1–11.Google Scholar
  169. Ziegler, L. B., & Stegman, D. R. (2013). Implications of a long-lived basal magma ocean in generating Earth’s ancient magnetic field. Geochemistry, Geophysics, Geosystems, 14, 4735–4742.CrossRefGoogle Scholar
  170. Zuluaga, J. I., Bustamante, S., Cuartas, P. A., & Hoyos, J. H. (2013). The influence of thermal evolution in the magnetic protection of terrestrial planets. The Astrophysical Journal, 770, 23 pp.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Earth, Planetary and Space SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations