Brain Tumor Segmentation Using 3D Convolutional Neural Network

  • Kaisheng LiangEmail author
  • Wenlian LuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11993)


Brain tumors segmentation is one of the most crucial procedures in the diagnosis of brain tumors because it is of great significance for the analysis and visualization of brain structures that can guide the surgery. With the development of natural scene segmentation model FCN, the most representative model U-net has been developed. An increasing number of people are trying to improve the encoder-decoder architecture to achieve better performance currently. In this paper, we focus on the improvement of the encoder-decoder network and the analysis of 3D medical images. We propose an additional path to enhance the encoder part and two separate up-sampling paths for the decoder part of the model. The proposed approach was trained and evaluated on BraTS 2019 dataset.


Brain tumor segmentation Convolutional neural network U-Net 



We would like to acknowledge Huashan Hospital, through the discussion with doctors and medical students, we have a deeper understanding of brain tumor segmentation and Glioma.


  1. 1.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  2. 2.
    Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 170117 (2017). Scholar
  3. 3.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection, July 2017Google Scholar
  4. 4.
    Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge (2018)Google Scholar
  5. 5.
    Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection, July 2017Google Scholar
  6. 6.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015Google Scholar
  7. 7.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR, vol. abs/1703.06870. (2017)
  8. 8.
    Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR, vol. abs/1606.00915. (2016)
  9. 9.
    Chen, L., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. CoRR, vol. abs/1706.05587. (2017)
  10. 10.
    Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR, vol. abs/1505.04597. (2015)
  11. 11.
    Li, X., Chen, H., Qi, X., Dou, Q., Fu, C.-W., Heng, P.-A.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging 37(12), 2663–2674 (2018)CrossRefGoogle Scholar
  12. 12.
    Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). Scholar
  13. 13.
    Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)CrossRefGoogle Scholar
  14. 14.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. CoRR, vol. abs/1606.06650. (2016)
  15. 15.
    Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. CoRR, vol. abs/1606.04797. (2016)
  16. 16.
    Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. CoRR, vol. abs/1810.11654. (2018)
  17. 17.
    Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. CoRR, vol. abs/1809.10483. (2018)
  18. 18.
    Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data. CoRR, vol. abs/1701.03056. (2017)
  19. 19.
    Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). Scholar
  20. 20.
    Kamnitsas, K., et al.: Deepmedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016). Scholar
  21. 21.
    Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). Scholar
  22. 22.
    Wu, Y., He, K.: Group normalization. CoRR, vol. abs/1803.08494. (2018)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fudan UniversityShanghaiChina

Personalised recommendations