Advertisement

Core/Shell Quantum-Dot-Based Luminescent Solar Concentrators

  • Guiju Liu
  • Xiaohan Wang
  • Guangting Han
  • Haiguang ZhaoEmail author
Chapter
  • 43 Downloads
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 28)

Abstract

Luminescent solar concentrators (LSCs) can serve as large-area sunlight collectors, suitable for applications in high-efficiency and low-cost energy conversion devices. LSCs can also provide adaptability to the needs of architects for building-integrated photovoltaics, which makes them an attractive option for structural buildings as transparent or nontransparent electricity generators. The optical efficiency of large-area LSCs significantly depends on the optical properties of the fluorophores. Among various types of fluorophores used in LSCs, core/shell quantum dots (QDs) are promising candidates as a new type of absorber/emitter in LSCs, due to their size-tunable wide absorption spectrum, narrow emission spectrum, high quantum yield, and structure-engineered large Stokes shift compared to organic dyes and polymers. In this chapter, we first introduce the working principle of an LSC, and then we discuss the design and synthesis of core/shell QDs with high Stokes shift and high fluorescence quantum yield, and core/shell structure-dependent band energy alignment. We further discuss in details the relationship between structure and optical properties, which is a key requirement for their applications in LSCs. We conclude with a detailed account of the latest research progress in structure, materials, and performance of LSCs based on colloidal core/shell QDs and a further perspective on the remaining key issues and open opportunities in the field.

Keywords

Core/shell quantum dots Luminescent solar concentrators Optical property Stokes shift Quantum yield Stability 

Notes

Acknowledgments

H. Zhao acknowledges the start funding support from Qingdao University and the funding from the Natural Science Foundation of Shandong Province (ZR2018MB001).

References

  1. 1.
    Zhang, S., Wu, S., Chen, W., Zhu, H., Xiong, Z., Yang, Z., Chen, C., Chen, R., Han, L., Chen, W.: Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Mater Today Energy. 8, 125–133 (2018)Google Scholar
  2. 2.
    Zhao, H., Rosei, F.: Colloidal quantum dots for solar technologies. Chem. 3(2), 229–258 (2017)Google Scholar
  3. 3.
    Giustino, F., Snaith, H.J.: Toward lead-free perovskite solar cells. ACS Energy Lett. 1(6), 1233–1240 (2016)Google Scholar
  4. 4.
    Song, S., Kang, G., Pyeon, L., Lim, C., Lee, G.-Y., Park, T., Choi, J.: Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η = 21.1%). ACS Energy Lett. 2, 2667–2673 (2017)Google Scholar
  5. 5.
    Wu, L., Chen, S.Y., Fan, F.J., Zhuang, T.T., Dai, C.M., Yu, S.H.: Polytypic nanocrystals of Cu-based ternary chalcogenides: colloidal synthesis and photoelectrochemical properties. J Am Chem Soc. 138(17), 5576–5584 (2016)Google Scholar
  6. 6.
    Feng, H.P., Tang, L., Zeng, G.M., Zhou, Y., Deng, Y.C., Ren, X., Song, B., Liang, C., Wei, M.Y., Yu, J.F.: Core-shell nanomaterials: applications in energy storage and conversion. Adv Colloid Interface Sci. 267, 26–46 (2019)Google Scholar
  7. 7.
    Chen, D., Wang, A., Buntine, M.A., Jia, G.: Recent advances in zinc-containing colloidal semiconductor nanocrystals for optoelectronic and energy conversion applications. ChemElectroChem. 6(18), 4709–4724 (2019)Google Scholar
  8. 8.
    NRE, Best research-cell efficiency chart, plotted from 1976 to the present. 20191106. https://www.nrel.gov/pv/cell-efficiency.html
  9. 9.
    Green, M.A.: Third generation photovoltaics: advanced solar energy conversion. Springer, Berlin (2006)Google Scholar
  10. 10.
    Wehrspohn, R.B., Gombert, A., Gombert, A., Heile, I., Wüllner, J., Gerstmaier, T., van Riesen, S., Gerster, E., Röttger, M., Lerchenmüller, H.: Recent progress in concentrator photovoltaics. Photonic Solar Energ Syst III. 7725, 772508 (2010)Google Scholar
  11. 11.
    Kirkpatrick, D., Eisenstadt, E., Haspert, A.: DARPA pushes for 50% efficient photovoltaics to power soldiers’ small tools. SPIE-The International Society for Optical Engineering (2006)Google Scholar
  12. 12.
    Weber, W.H., Lambe, J.: Luminescent greenhouse collector for solar radiation. Appl Optics. 15(10), 2299–2300 (1976)ADSGoogle Scholar
  13. 13.
    Currie, M.J., Mapel, J.K., Heidel, T.D., Goffri, S., Baldo, M.A.: High-efficiency organic solar concentrators for photovoltaics. Science. 321(5886), 226–228 (2008)ADSGoogle Scholar
  14. 14.
    Desmet, L., Ras, A.J.M., de Boer, D.K.G., Debije, M.G.: Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency. Opt Lett. 37, 3087–3089 (2012)ADSGoogle Scholar
  15. 15.
    Corrado, C., Leow, S.W., Osborn, M., Chan, E., Balaban, B., Carter, S.A.: Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design. Sol Energ Mat Sol C. 111, 74–81 (2013)Google Scholar
  16. 16.
    Bronstein, N.D., Yao, Y., Xu, L., O’Brien, E., Powers, A.S., Ferry, V.E., Alivisatos, A.P., Nuzzo, R.G.: Quantum dot luminescent concentrator cavity exhibiting 30-fold concentration. ACS Photonics. 2(11), 1576–1583 (2015)Google Scholar
  17. 17.
    Klimov, V.I., Baker, T.A., Lim, J., Velizhanin, K.A., McDaniel, H.: Quality factor of luminescent solar concentrators and practical concentration limits attainable with semiconductor quantum dots. ACS Photonics. 3(6), 1138–1148 (2016)Google Scholar
  18. 18.
    Cambie, D., Zhao, F., Hessel, V., Debije, M.G., Noel, T.: A leaf-inspired luminescent solar concentrator for energy-efficient continuous-flow photochemistry. Angew Chem Int Ed Engl. 56(4), 1050–1054 (2017)Google Scholar
  19. 19.
    Brennan, L.J., Purcell-Milton, F., McKenna, B., Watson Trystan, M., Gun’ko, Y.K., Evans, R.C.: Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells. J Mater Chem A. 6(6), 2671–2680 (2018)Google Scholar
  20. 20.
    Talite, M.J., Huang, H.Y., Wu, Y.H., Sena, P.G., Cai, K.B., Lin, T.N., Shen, J.L., Chou, W.C., Yuan, C.T.: Greener luminescent solar concentrators with high loading contents based on in situ cross-linked carbon nanodots for enhancing solar energy harvesting and resisting concentration-induced quenching. ACS Appl Mater Interfaces. 10(40), 34184–34192 (2018)Google Scholar
  21. 21.
    Wu, K., Li, H., Klimov, V.I.: Tandem luminescent solar concentrators based on engineered quantum dots. Nat Photonics. 12(2), 105–110 (2018)ADSGoogle Scholar
  22. 22.
    AbouElhamd, A.R., Al-Sallal, K.A., Hassan, A.: Review of core/shell quantum dots technology integrated into building’s glazing. Energies. 12(6), 1058 (2019)Google Scholar
  23. 23.
    Sadeghi, S., Melikov, R., Bahmani Jalali, H., Karatum, O., Srivastava, S.B., Conkar, D., Firat-Karalar, E.N., Nizamoglu, S.: Ecofriendly and efficient luminescent solar concentrators based on fluorescent proteins. ACS Appl Mater Interfaces. 11(9), 8710–8716 (2019)Google Scholar
  24. 24.
    Sol, J., Dehm, V., Hecht, R., Wurthner, F., Schenning, A., Debije, M.G.: Temperature-responsive luminescent solar concentrators: tuning energy transfer in a liquid crystalline matrix. Angew Chem Int Ed Engl. 57(4), 1030–1033 (2018)Google Scholar
  25. 25.
    Sadeghi, S., Bahmani Jalali, H., Melikov, R., Ganesh Kumar, B., Mohammadi Aria, M., Ow-Yang, C.W., Nizamoglu, S.: Stokes-shift-engineered indium phosphide quantum dots for efficient luminescent solar concentrators. ACS Appl Mater Interfaces. 10(15), 12975–12982 (2018)Google Scholar
  26. 26.
    Luo, X., Ding, T., Liu, X., Liu, Y., Wu, K.: Quantum cutting luminescent solar concentrators using ytterbium doped perovskite nanocrystals. Nano Lett. 19, 338–341 (2018)ADSGoogle Scholar
  27. 27.
    Sharma, M., Gungor, K., Yeltik, A., Olutas, M., Guzelturk, B., Kelestemur, Y., Erdem, T., Delikanli, S., McBride, J.R., Demir, H.V.: Near-unity emitting copper-doped colloidal semiconductor quantum wells for luminescent solar concentrators. Adv Mater. 29(30), 1700821 (2017)Google Scholar
  28. 28.
    Mateen, F., Oh, H., Jung, W., Lee, S.Y., Kikuchi, H., Hong, S.-K.: Polymer dispersed liquid crystal device with integrated luminescent solar concentrator. Liq Cryst. 45(4), 498–506 (2017)Google Scholar
  29. 29.
    Gutierrez, G.D., Coropceanu, I., Bawendi, M.G., Swager, T.M.: A low reabsorbing luminescent solar concentrator employing pi-conjugated polymers. Adv Mater. 28(3), 497–501 (2016)Google Scholar
  30. 30.
    Zhang, J., Wang, M., Zhang, Y., He, H., Xie, W., Yang, M., Ding, J., Bao, J., Sun, S., Gao, C.: Optimization of large-size glass laminated luminescent solar concentrators. Sol Energy. 117, 260–267 (2015)ADSGoogle Scholar
  31. 31.
    Zhao, H., Benetti, D., Jin, L., Zhou, Y., Rosei, F., Vomiero, A.: Absorption enhancement in “giant” core/alloyed-shell quantum dots for luminescent solar concentrator. Small. 12(38), 5354–5365 (2016)Google Scholar
  32. 32.
    Meinardi, F., Bruni, F., Brovelli, S.: Luminescent solar concentrators for building-integrated photovoltaics. Nat Rev Mater. 2(12), 17072 (2017)ADSGoogle Scholar
  33. 33.
    Bergren, M.R., Makarov, N.S., Ramasamy, K., Jackson, A., Guglielmetti, R., McDaniel, H.: High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows. ACS Energy Lett. 3(3), 520–525 (2018)Google Scholar
  34. 34.
    You, Y., Tong, X., Wang, W., Sun, J., Yu, P., Ji, H., Niu, X., Wang, Z.M.: Eco-friendly colloidal quantum dot-based luminescent solar concentrators. Adv Sci. 6(9), 1801967 (2019)Google Scholar
  35. 35.
    Mazzaro, R., Gradone, A., Angeloni, S., Morselli, G., Cozzi, P.G., Romano, F., Vomiero, A., Ceroni, P.: Hybrid silicon nanocrystals for color-neutral and transparent luminescent solar concentrators. ACS Photonics. 6(9), 2303–2311 (2019)Google Scholar
  36. 36.
    Zhou, Y., Zhao, H., Ma, D., Rosei, F.: Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem Soc Rev. 47(15), 5866–5890 (2018)Google Scholar
  37. 37.
    Moraitis, P., Schropp, R.E.I., van Sark, W.G.J.H.M.: Nanoparticles for luminescent solar concentrators – a review. Opt Mater. 84, 636–645 (2018)ADSGoogle Scholar
  38. 38.
    Reinders, A.H.M.E., de la Grée, G. D., Papadopoulos, A., Rosemann, A., Debije, M. G., Cox, M., Krumer, Z.: Leaf roof – designing luminescent solar concentrating PV roof tiles. 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 3447–3451 (2016)Google Scholar
  39. 39.
    van Sark, W., Moraitis, P., Aalberts, C., Drent, M., Grasso, T., L’Ortije, Y., Visschers, M., Westra, M., Plas, R., Planje, W.: The “electric mondrian” as a luminescent solar concentrator demonstrator case study. Sol RRL. 1, 1600015 (2017)Google Scholar
  40. 40.
    Debije, M.G., Tzikas, C., Rajkumar, V.A., de Jong, M.M.: The solar noise barrier project: 2. The effect of street art on performance of a large scale luminescent solar concentrator prototype. Renew Energy. 113, 1288–1292 (2017)Google Scholar
  41. 41.
    Kanellis, M., de Jong, M.M., Slooff, L., Debije, M.G.: The solar noise barrier project: 1. Effect of incident light orientation on the performance of a large-scale luminescent solar concentrator noise barrier. Renew Energy. 103, 647–652 (2017)Google Scholar
  42. 42.
    Batchelder, J.S., Zewail, A.H., Cole, T.: Luminescent solar concentrators 1- theory of operation and techniques for performance. Appl Optics. 18(18), 3090–3110 (1979)ADSGoogle Scholar
  43. 43.
    Wilton, S.R., Fetterman, M.R., Low, J.J., You, G., Jiang, Z., Xu, J.: Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators. Opt Express. 22(1), A35–A43 (2014)ADSGoogle Scholar
  44. 44.
    Zhou, Y., Benetti, D., Tong, X., Jin, L., Wang, Z.M., Ma, D., Zhao, H., Rosei, F.: Colloidal carbon dots based highly stable luminescent solar concentrators. Nano Energy. 44, 378–387 (2018)Google Scholar
  45. 45.
    Liu, G., Mazzaro, R., Wang, Y., Zhao, H., Vomiero, A.: High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy. 60, 119–126 (2019)Google Scholar
  46. 46.
    Zhu, M., Li, Y., Tian, S., Xie, Y., Zhao, X., Gong, X.: Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators. J Colloid Interface Sci. 534, 509–517 (2019)ADSGoogle Scholar
  47. 47.
    Li, H., Wu, K., Lim, J., Song, H.-J., Klimov, V.I.: Doctor-blade deposition of quantum dots onto standard window glass for low-loss large-area luminescent solar concentrators. Nat Energy. 1, 16157 (2016)ADSGoogle Scholar
  48. 48.
    Chen, W., Li, J., Liu, P., Liu, H., Xia, J., Li, S., Wang, D., Wu, D., Lu, W., Sun, X.W., Wang, K.: Heavy metal free nanocrystals with near infrared emission applying in luminescent solar concentrator. Solar RRL. 1(6), 1700041 (2017)Google Scholar
  49. 49.
    Zhao, H., Sun, R., Wang, Z., Fu, K., Hu, X., Zhang, Y.: Zero-dimensional perovskite nanocrystals for efficient luminescent solar concentrators. Adv Funct Mater. 29(30), 1902262 (2019)Google Scholar
  50. 50.
    Mateen, F., Ali, M., Oh, H., Hong, S.-K.: Nitrogen-doped carbon quantum dot based luminescent solar concentrator coupled with polymer dispersed liquid crystal device for smart management of solar spectrum. Sol Energy. 178, 48–55 (2019)ADSGoogle Scholar
  51. 51.
    Khan, A.H., Pinchetti, V., Tanghe, I., Dang, Z., Martín-García, B., Hens, Z., Van Thourhout, D., Geiregat, P., Brovelli, S., Moreels, I.: Tunable and efficient red to near-infrared photoluminescence by synergistic exploitation of core and surface silver doping of CdSe nanoplatelets. Chem Mater. 31(4), 1450–1459 (2019)Google Scholar
  52. 52.
    El-Bashir, S.M.: Coumarin-doped PC/CdSSe/ZnS nanocomposite films: a reduced self-absorption effect for luminescent solar concentrators. J Lumin. 206, 426–431 (2019)Google Scholar
  53. 53.
    Rowan, B.C., Wilson, L.R., Richards, B.S.: Advanced material concepts for luminescent solar concentrators. IEEE J Sel Top Quant Electronics. 14(5), 1312–1322 (2008)ADSGoogle Scholar
  54. 54.
    Liang, H., Zeng, Z., Li, Z., Xu, J., Chen, B., Zhao, H., Zhang, Q., Ming, H.: Fabrication and amplification of rhodamine B-doped step-index polymer optical fiber. J Appl Polym Sci. 93(2), 681–685 (2004)Google Scholar
  55. 55.
    Dienel, T., Bauer, C., Dolamic, I., Brühwiler, D.: Spectral-based analysis of thin film luminescent solar concentrators. Sol Energy. 84(8), 1366–1369 (2010)ADSGoogle Scholar
  56. 56.
    Slooff, L.H., Bende, E.E., Burgers, A.R., Budel, T., Pravettoni, M., Kenny, R.P., Dunlop, E.D., Büchtemann, A.: A luminescent solar concentrator with 7.1% power conversion efficiency. Phys Status Solidi – R. 2(6), 257–259 (2008)Google Scholar
  57. 57.
    Goetzberger, A., Greubel, W.: Solar energy conversion with fluorescent collectors. Appl Phys. 14, 123–139 (1977)ADSGoogle Scholar
  58. 58.
    Zhou, Y., Benetti, D., Fan, Z., Zhao, H., Ma, D., Govorov, A.O., Vomiero, A., Rosei, F.: Near infrared, highly efficient luminescent solar concentrators. Adv Energy Mater. 6(11), 1501913 (2016)Google Scholar
  59. 59.
    Coropceanu, I., Bawendi, M.G.: Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14(7), 4097–4101 (2014)ADSGoogle Scholar
  60. 60.
    Meinardi, F., Colombo, A., Velizhanin, K.A., Simonutti, R., Lorenzon, M., Beverina, L., Viswanatha, R., Klimov, V.I., Brovelli, S.: Large-area luminescent solar concentrators based on ‘Stokes-shift-engineered’ nanocrystals in a mass-polymerized PMMA matrix. Nat Photonics. 8(5), 392–399 (2014)ADSGoogle Scholar
  61. 61.
    Tytus, M., Krasnyj, J., Jacak, W., Chuchmala, A., Donderowicz, W., Jacak, L.: Differences between photoluminescence spectra of type-I and type-II quantum dots. J Phys Conf Ser. 104, 012011 (2008)Google Scholar
  62. 62.
    Kim, S., Fisher, B., Eisler, H.-J., Bawendi, M.: Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc. 125(38), 11466–11467 (2003)Google Scholar
  63. 63.
    Gheshlaghi, N., Pisheh, H.S., Karim, M.R., Malkoc, D., Ünlü, H.: Interfacial strain effect on type-I and type-II core/shell quantum dots. Superlattice Microst. 97, 489–494 (2016)ADSGoogle Scholar
  64. 64.
    Reiss, P., Protiere, M., Li, L.: Core/shell semiconductor nanocrystals. Small. 5(2), 154–168 (2009)Google Scholar
  65. 65.
    De Geyter, B., Justo, Y., Moreels, I., Lambert, K., Smet, P.F., Van Thourhout, D., Houtepen, A.J., Grodzinska, D., de Mello Donega, C., Meijerink, A., Vanmaekelbergh, D., Hens, Z.: The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano. 5(1), 58–66 (2010)Google Scholar
  66. 66.
    Vasudevan, D., Gaddam, R.R., Trinchi, A., Cole, I.: Core-shell quantum dots: properties and applications. J Alloys Compd. 636, 395–404 (2015)Google Scholar
  67. 67.
    Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G.: (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B. 101(46), 9463–9475 (1997)Google Scholar
  68. 68.
    Zhao, H., Chaker, M., Ma, D.: Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots. J Mater Chem. 21(43), 17483 (2011)Google Scholar
  69. 69.
    Pal, B.N., Ghosh, Y., Brovelli, S., Laocharoensuk, R., Klimov, V.I., Hollingsworth, J.A., Htoon, H.: ‘Giant’ CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance. Nano Lett. 12(1), 331–336 (2012)ADSGoogle Scholar
  70. 70.
    Zhu, J., Wang, S.-N., Li, J.-J., Zhao, J.-W.: The effect of core size on the fluorescence emission properties of CdTe@CdS core@shell quantum dots. J Lumin. 199, 216–224 (2018)Google Scholar
  71. 71.
    Itzhakov, S., Shen, H., Buhbut, S., Lin, H., Oron, D.: Type-II quantum-dot-sensitized solar cell spanning the visible and near-infrared spectrum. J Phys Chem C. 117(43), 22203–22210 (2013)Google Scholar
  72. 72.
    Verma, S., Kaniyankandy, S., Ghosh, H.: Charge separation by indirect bandgap transitions in CdS/ZnSe type-II core/shell quantum dots. J Phys Chem C. 117, 10901–10908 (2013)Google Scholar
  73. 73.
    Park, Y.S., Bae, W.K., Padilha, L.A., Pietryga, J.M., Klimov, V.I.: Effect of the core/shell interface on auger recombination evaluated by single-quantum-dot spectroscopy. Nano Lett. 14(2), 396–402 (2014)ADSGoogle Scholar
  74. 74.
    Selopal, G.S., Zhao, H., Tong, X., Benetti, D., Navarro-Pardo, F., Zhou, Y., Barba, D., Vidal, F., Wang, Z.M., Rosei, F.: Highly stable colloidal “giant” quantum dots sensitized solar cells. Adv Funct Mater. 27(30), 1701468 (2017)Google Scholar
  75. 75.
    Tong, X., Kong, X.-T., Zhou, Y., Navarro-Pardo, F., Selopal, G.S., Sun, S., Govorov, A.O., Zhao, H., Wang, Z.M., Rosei, F.: Near-infrared, heavy metal-free colloidal “giant” core/shell quantum dots. Adv Energy Mater. 8(2), 1701432 (2018)Google Scholar
  76. 76.
    Brovelli, S., Schaller, R.D., Crooker, S.A., Garcia-Santamaria, F., Chen, Y., Viswanatha, R., Hollingsworth, J.A., Htoon, H., Klimov, V.I.: Nano-engineered electron-hole exchange interaction controls exciton dynamics in core-shell semiconductor nanocrystals. Nat Commun. 2, 280 (2011)ADSGoogle Scholar
  77. 77.
    Meinardi, F., McDaniel, H., Carulli, F., Colombo, A., Velizhanin, K.A., Makarov, N.S., Simonutti, R., Klimov, V.I., Brovelli, S.: Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots. Nat Nanotechnol. 10(10), 878–885 (2015)ADSGoogle Scholar
  78. 78.
    Tong, X., Zhou, Y., Jin, L., Basu, K., Adhikari, R., Selopal, G.S., Tong, X., Zhao, H., Sun, S., Vomiero, A., Wang, Z.M., Rosei, F.: Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy. 31, 441–449 (2017)Google Scholar
  79. 79.
    Erickson, C.S., Bradshaw, L.R., McDowall, S., Gilbertson, J.D., Gamelin, D.R., Patrick, D.L.: Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano. 8, 3461–3467 (2014)Google Scholar
  80. 80.
    Bradshaw, L.R., Knowles, K.E., McDowall, S., Gamelin, D.R.: Nanocrystals for luminescent solar concentrators. Nano Lett. 15(2), 1315–1323 (2015)ADSGoogle Scholar
  81. 81.
    Zhou, J., Zhu, M., Meng, R., Qin, H., Peng, X.: Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J Am Chem Soc. 139(46), 16556–16567 (2017)Google Scholar
  82. 82.
    Ghosh, Y., Mangum, B.D., Casson, J.L., Williams, D.J., Htoon, H., Hollingsworth, J.A.: New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking “giant” core/shell nanocrystal quantum dots. J Am Chem Soc. 134(23), 9634–9643 (2012)Google Scholar
  83. 83.
    Michalska, M., Aboulaich, A., Medjahdi, G., Mahiou, R., Jurga, S., Schneider, R.: Amine ligands control of the optical properties and the shape of thermally grown core/shell CuInS2/ZnS quantum dots. J Alloys Compd. 645, 184–192 (2015)Google Scholar
  84. 84.
    Hanifi, D.A., Bronstein, N.D., Koscher, B.A., Nett, Z., Swabeck, J.K., Takano, K., Schwartzberg, A.M., Maserati, L., Vandewal, K., van de Burgt, Y., Salleo, A., Alivisatos, A.P.: Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science. 363, 1199–1202 (2019)ADSGoogle Scholar
  85. 85.
    Zhao, H., Chaker, M., Wu, N., Ma, D.: Towards controlled synthesis and better understanding of highly luminescent PbS/CdS core/shell quantum dots. J Mater Chem. 21(24), 8898 (2011)Google Scholar
  86. 86.
    Huang, B., Yang, H., Zhang, L., Yuan, Y., Cui, Y., Zhang, J.: Effect of surface/interfacial defects on photo-stability of thick-shell CdZnSeS/ZnS quantum dots. Nanoscale. 10(38), 18331–18340 (2018)Google Scholar
  87. 87.
    Yang, X., Zhao, D., Leck, K.S., Tan, S.T., Tang, Y.X., Zhao, J., Demir, H.V., Sun, X.W.: Full visible range covering InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes. Adv Mater. 24(30), 4180–4185 (2012)Google Scholar
  88. 88.
    Tong, X., Kong, X.T., Wang, C., Zhou, Y., Navarro-Pardo, F., Barba, D., Ma, D., Sun, S., Govorov, A.O., Zhao, H., Wang, Z.M., Rosei, F.: Optoelectronic properties in near-infrared colloidal heterostructured pyramidal “giant” core/shell quantum dots. Adv Sci (Weinh). 5(8), 1800656 (2018)Google Scholar
  89. 89.
    Navarro-Pardo, F., Zhao, H., Wang, Z.M., Rosei, F.: Structure/property relations in “giant” semiconductor nanocrystals: opportunities in photonics and electronics. Acc Chem Res. 51(3), 609–618 (2018)Google Scholar
  90. 90.
    Tan, L., Zhou, Y., Ren, F., Benetti, D., Yang, F., Zhao, H., Rosei, F., Chaker, M., Ma, D.: Ultrasmall PbS quantum dots: a facile and greener synthetic route and their high performance in luminescent solar concentrators. J Mater Chem A. 5(21), 10250–10260 (2017)Google Scholar
  91. 91.
    Chatten, A.J., Barnham, K.W.J., Buxton, B.F., Ekins-Daukes, N.J., Malik, M.A.: Proc. of 3rd World Conf. on photovoltaic energy conversion. IEEE Osaka. 3, 2657 (2003)Google Scholar
  92. 92.
    Xu, L., Yao, Y., Bronstein, N.D., Li, L., Alivisatos, A.P., Nuzzo, R.G.: Enhanced photon collection in luminescent solar concentrators with distributed bragg reflectors. ACS Photonics. 3, 278–285 (2016)Google Scholar
  93. 93.
    Connell, R., Ferry, V.E.: Integrating photonics with luminescent solar concentrators: optical transport in the presence of photonic mirrors. J Phys Chem C. 120(37), 20991–20997 (2016)Google Scholar
  94. 94.
    Connell, R., Pinnell, C., Ferry, V.E.: Designing spectrally-selective mirrors for use in luminescent solar concentrators. J Opt. 20(2), 024009 (2018)ADSGoogle Scholar
  95. 95.
    Song, H.J., Jeong, B.G., Lim, J., Lee, D.C., Bae, W.K., Klimov, V.I.: Performance limits of luminescent solar concentrators tested with seed/quantum-well quantum dots in a selective-reflector-based optical cavity. Nano Lett. 18(1), 395–404 (2018)ADSGoogle Scholar
  96. 96.
    Mateen, F., Oh, H., Jung, W., Binns, M., Hong, S.-K.: Metal nanoparticles based stack structured plasmonic luminescent solar concentrator. Sol Energy. 155, 934–941 (2017)ADSGoogle Scholar
  97. 97.
    Zhao, H., Benetti, D., Tong, X., Zhang, H., Zhou, Y., Liu, G., Ma, D., Sun, S., Wang, Z.M., Wang, Y., Rosei, F.: Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy. 50, 756–765 (2018) Google Scholar
  98. 98.
    Liu, G., Zhao, H., Diao, F., Ling, Z., Wang, Y.: Stable tandem luminescent solar concentrators based on CdSe/CdS quantum dots and carbon dots. J Mater Chem C. 6(37), 10059–10066 (2018)Google Scholar
  99. 99.
    Needell, D.R., Ilic, O., Bukowsky, C.R., Nett, Z., Xu, L., He, J., Bauser, H., Lee, B.G., Geisz, J.F., Nuzzo, R.G., Alivisatos, A.P., Atwater, H.A.: Design criteria for micro-optical tandem luminescent solar concentrators. IEEE J Photovolt. 8(6), 1560–1567 (2018)Google Scholar
  100. 100.
    Tamang, S., Lincheneau, C., Hermans, Y., Jeong, S., Reiss, P.: Chemistry of InP nanocrystal syntheses. Chem Mater. 28, 2491–2506 (2016)Google Scholar
  101. 101.
    Li, L., Reiss, P.: One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J Am Chem Soc. 130, 11588–11589 (2008)Google Scholar
  102. 102.
    Lim, J., Bae, W.K., Lee, D., Nam, M.K., Jung, J., Lee, C., Char, K., Lee, S.: InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem Mater. 23(20), 4459–4463 (2011)Google Scholar
  103. 103.
    Kim, S., Kim, T., Kang, M., Kwak, S.K., Yoo, T.W., Park, L.S., Yang, I., Hwang, S., Lee, J.E., Kim, S.K., Kim, S.W.: Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes. J Am Chem Soc. 134(8), 3804–3809 (2012)Google Scholar
  104. 104.
    Karatum, O., Jalali, H.B., Sadeghi, S., Melikov, R., Srivastava, S.B., Nizamoglu, S.: Light-emitting devices based on type-II InP/ZnO quantum dots. ACS Photonics. 6(4), 939–946 (2019)Google Scholar
  105. 105.
    Nagamine, G., Nunciaroni, H.B., McDaniel, H., Efros, A.L., de Brito Cruz, C.H., Padilha, L.A.: Evidence of band-edge hole levels inversion in spherical CuInS2 quantum dots. Nano Lett. 18(10), 6353–6359 (2018)ADSGoogle Scholar
  106. 106.
    Li, C., Chen, W., Wu, D., Quan, D., Zhou, Z., Hao, J., Qin, J., Li, Y., He, Z., Wang, K.: Large stokes shift and high efficiency luminescent solar concentrator incorporated with CuInS2/ZnS quantum dots. Sci Rep. 5, 17777 (2015)ADSGoogle Scholar
  107. 107.
    Liu, H., Li, S., Chen, W., Wang, D., Li, C., Wu, D., Hao, J., Zhou, Z., Wang, X., Wang, K.: Scattering enhanced quantum dots based luminescent solar concentrators by silica microparticles. Sol Energ Mater Sol C. 179, 380–385 (2018)Google Scholar
  108. 108.
    Liu, G., Sun, B., Li, H., Wang, Y., Zhao, H.: Integration of photoelectrochemical devices and luminescent solar concentrators based on giant quantum dots for highly stable hydrogen generation. J Mater Chem A. 7, 18529–18537 (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Guiju Liu
    • 1
  • Xiaohan Wang
    • 2
  • Guangting Han
    • 2
  • Haiguang Zhao
    • 1
    Email author
  1. 1.College of Physics & State Key Laboratory of Bio-Fibers and Eco-TextilesQingdao UniversityQingdaoPeople’s Republic of China
  2. 2.State Key Laboratory of Bio-Fibers and Eco-Textiles & College of Textiles & ClothingQingdao UniversityQingdaoPeople’s Republic of China

Personalised recommendations