Advertisement

Exciton–Phonon Interactions and Temperature Behavior of Optical Spectra in Core/Shell InP/ZnS Quantum Dots

  • Sergey Savchenko
  • Alexander Vokhmintsev
  • Ilya WeinsteinEmail author
Chapter
  • 27 Downloads
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 28)

Abstract

The chapter summarizes research results on temperature evolution of optical absorption spectra in a wide temperature range of 6.5–296 K for colloidal core/shell InP/ZnS quantum dot ensembles with a different size distribution. Exciton–optical transition energies in the InP core and ZnS shell were determined by the second-order derivative spectrophotometry. Numerical analysis within the frame of linear exciton–phonon coupling showed that the shifts of the observed spectral maxima with temperature were due to the interaction of excited states with longitudinal acoustic vibrations. It was established that the half-width of the spectral bands remained unchanged, which indicated the inhomogeneous broadening effect and a high degree of static disorder in the ensembles under study. The semi-phenomenological model was proposed that took into account the effects of the exciton–phonon interaction and allowed one to analyze the influence of the static and dynamic types of atomic disorder on behavior of optical absorption spectra in InP/ZnS quantum dots under temperature variation.

Keywords

Quantum dot Core/shell Optical absorption Derivative spectrophotometry Half-width Ensemble Temperature dependence Size distribution Semiconductor nanocrystal Static and dynamic disorder Inhomogeneous broadening Exciton-phonon coupling 

Notes

Acknowledgments

This research was supported by RFBR according to the research project no. 18-32-00664 and Act 211 Government of the Russian Federation, contract no. 02.A03.21.0006.

References

  1. 1.
    Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science. 271, 933–937 (1996).  https://doi.org/10.1126/science.271.5251.933 ADSCrossRefGoogle Scholar
  2. 2.
    Efros, A.L., Efros, A.L.: Interband absorption of light in a semiconductor sphere. Sov. Phys. Semicond. 16, 772–775 (1982)Google Scholar
  3. 3.
    Brus, L.E.: Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J. Chem. Phys. 80, 4403–4409 (1984).  https://doi.org/10.1063/1.447218 ADSCrossRefGoogle Scholar
  4. 4.
    Xie, R., Battaglia, D., Peng, X.: Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 129, 15432–15433 (2007).  https://doi.org/10.1021/ja076363h CrossRefGoogle Scholar
  5. 5.
    Lee, S.-H., Lee, K.-H., Jo, J.-H., Park, B., Kwon, Y., Jang, H.S., Yang, H.: Remote-type, high-color gamut white light-emitting diode based on InP quantum dot color converters. Optic. Mater. Express. 4, 1297–1302 (2014).  https://doi.org/10.1364/OME.4.001297 ADSCrossRefGoogle Scholar
  6. 6.
    Song, W.-S., Lee, S.-H., Yang, H.: Fabrication of warm, high CRI white LED using non-cadmium quantum dots. Opt. Mater. Express. 3, 1468–1473 (2013).  https://doi.org/10.1364/OME.3.001468 ADSCrossRefGoogle Scholar
  7. 7.
    Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C. 112, 18737–18753 (2008).  https://doi.org/10.1021/jp806791s CrossRefGoogle Scholar
  8. 8.
    Scher, J.A., Bayne, M.G., Srihari, A., Nangia, S., Chakraborty, A.: Development of effective stochastic potential method using random matrix theory for efficient conformational sampling of semiconductor nanoparticles at non-zero temperatures. J. Chem. Phys. 149, 014103 (2018).  https://doi.org/10.1063/1.5026027 ADSCrossRefGoogle Scholar
  9. 9.
    Rempel, A.A., Kozlova, E.A., Gorbunova, T.I., Cherepanova, S.V., Gerasimov, E.Y., Kozhevnikova, N.S., Valeeva, A.A., Korovin, E.Y., Kaichev, V.V., Shchipunov, Y.A.: Synthesis and solar light catalytic properties of titania-cadmium sulfide hybrid nanostructures. Catal. Commun. 68, 61–66 (2015).  https://doi.org/10.1016/j.catcom.2015.04.034 CrossRefGoogle Scholar
  10. 10.
    Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A.: Luminescence parameters of InP/ZnS@AAO nanostructures. AIP Conf. Proc. 1717(4943471), (2016).  https://doi.org/10.1063/1.4943471
  11. 11.
    Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A.: Optical properties of InP/ZnS quantum dots deposited into nanoporous anodic alumina. J. Phys. Conf. Ser. 741, 012151 (2016).  https://doi.org/10.1088/1742-6596/741/1/012151 CrossRefGoogle Scholar
  12. 12.
    Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.-J., Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science. 290, 314–317 (2000).  https://doi.org/10.1126/science.290.5490.314 ADSCrossRefGoogle Scholar
  13. 13.
    Anc, M.J., Pickett, N.L., Gresty, N.C., Harris, J.A., Mishra, K.C.: Progress in non-Cd quantum dot development for lighting applications. ECS J. Solid State Sci. Technol. 2, R3071–R3082 (2013).  https://doi.org/10.1149/2.016302jss CrossRefGoogle Scholar
  14. 14.
    Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T.: Quantum dots versus organic dyes as fluorescent labels. Nat. Methods. 5, 763–775 (2008).  https://doi.org/10.1038/nmeth.1248 CrossRefGoogle Scholar
  15. 15.
    Hussain, S., Won, N., Nam, J., Bang, J., Chung, H., Kim, S.: One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. ChemPhysChem. 10, 1466–1470 (2009).  https://doi.org/10.1002/cphc.200900159 CrossRefGoogle Scholar
  16. 16.
    Reiss, P., Protiere, M., Li, L.: Core/shell semiconductor nanocrystals. Small. 5, 154–168 (2009).  https://doi.org/10.1002/smll.200800841 CrossRefGoogle Scholar
  17. 17.
    Brichkin, S.B.: Synthesis and properties of colloidal indium phosphide quantum dots. Colloid J. 77, 393–403 (2015).  https://doi.org/10.1134/S1061933X15040043 CrossRefGoogle Scholar
  18. 18.
    Song, W.-S., Lee, H.-S., Lee, J.C., Jang, D.S., Choi, Y., Choi, M., Yang, H.: Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 15, 1750 (2013).  https://doi.org/10.1007/s11051-013-1750-y ADSCrossRefGoogle Scholar
  19. 19.
    Brichkin, S.B., Spirin, M.G., Tovstun, S.A., Gak, V.Y., Mart’yanova, E.G., Razumov, V.F.: Colloidal quantum dots InP@ZnS: inhomogeneous broadening and distribution of luminescence lifetimes. High Energy Chem. 50, 395–399 (2016).  https://doi.org/10.1134/S0018143916050064 CrossRefGoogle Scholar
  20. 20.
    Ayupova, D., Dobhal, G., Laufersky, G., Nann, T., Goreham, R.V.: An in vitro investigation of cytotoxic effects of InP/ZnS quantum dots with different surface chemistries. Nano. 9, 135 (2019).  https://doi.org/10.3390/nano9020135 CrossRefGoogle Scholar
  21. 21.
    Gaponenko, S.V.: Optical Properties of Semiconductor Nanocrystals. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  22. 22.
    Weller, H.: Colloidal semiconductor Q-particles: chemistry in the transition region between solid state and molecules. Angew. Chem. Int. Ed. Engl. 32, 41–53 (1993).  https://doi.org/10.1002/anie.199300411 CrossRefGoogle Scholar
  23. 23.
    Empedocles, S.A., Bawendi, M.G.: Quantum-confined stark effect in single CdSe quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science. 278, 2114–2117 (1997).  https://doi.org/10.1126/science.278.5346.2114 ADSCrossRefGoogle Scholar
  24. 24.
    Ekimov, A.I.: Optical properties of semiconductor quantum dots in glass matrix. Phys. Scr. 39, 217–222 (1991).  https://doi.org/10.1088/0031-8949/1991/T39/033 CrossRefGoogle Scholar
  25. 25.
    Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).  https://doi.org/10.1021/ja00072a025 CrossRefGoogle Scholar
  26. 26.
    Efros, A.L., Rosen, M., Kuno, M., Nirmal, M., Norris, D., Bawendi, M.: Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B. 54, 4843–4856 (1996).  https://doi.org/10.1103/PhysRevB.54.4843 ADSCrossRefGoogle Scholar
  27. 27.
    Sugisaki, M., Ren, H.-W., Nishi, K., Masumoto, Y.: Optical properties of InP self-assembled quantum dots studied by imaging and single dot spectroscopy. Jpn. J. Appl. Phys. Part. 1 Regul. Pap. Short Notes Rev. Pap. 41, 958–966 (2002)CrossRefGoogle Scholar
  28. 28.
    Narayanaswamy, A., Feiner, L.F., Van Der Zaag, P.J.: Temperature dependence of the photoluminescence of InP/ZnS quantum dots. J. Phys. Chem. C. 112, 6775–6780 (2008).  https://doi.org/10.1021/jp800339m CrossRefGoogle Scholar
  29. 29.
    Narayanaswamy, A., Feiner, L.F., Meijerink, A., Van Der Zaag, P.J.: The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots. ACS Nano. 3, 2539–2546 (2009).  https://doi.org/10.1021/nn9004507 CrossRefGoogle Scholar
  30. 30.
    Biadala, L., Siebers, B., Beyasit, Y., Tessier, M.D., Dupont, D., Hens, Z., Yakovlev, D.R., Bayer, M.: Band-edge exciton fine structure and recombination dynamics in InP/ZnS colloidal nanocrystals. ACS Nano. 10, 3356–3364 (2016).  https://doi.org/10.1021/acsnano.5b07065 CrossRefGoogle Scholar
  31. 31.
    Norris, D.J., Bawendi, M.G.: Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B. 53, 16338–16346 (1996).  https://doi.org/10.1103/PhysRevB.53.16338 ADSCrossRefGoogle Scholar
  32. 32.
    Talsky, G.: Derivative Spectrophotometry: Low and Higher Order. VCH, Weinheim (1994)CrossRefGoogle Scholar
  33. 33.
    O’Haver, T.C., Begley, T.: Signal-to-noise ratio in higher order derivative spectrometry. Anal. Chem. 53, 1876–1878 (1981).  https://doi.org/10.1021/ac00235a036 CrossRefGoogle Scholar
  34. 34.
    Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedure. Anal. Chem. 36, 1627–1639 (1964).  https://doi.org/10.1021/ac60214a047 ADSCrossRefGoogle Scholar
  35. 35.
    Kuś, S., Marczenko, Z., Obarski, N.: Derivative UV-VIS spectrophotometry in analytical chemistry. Chem. Anal. 41, 899–929 (1996)Google Scholar
  36. 36.
    Mićić, O.I., Jones, K.M., Cahill, A., Nozik, A.J.: Optical, electronic, and structural properties of uncoupled and close-packed arrays of InP quantum dots. J. Phys. Chem. B. 102, 9791–9796 (1998).  https://doi.org/10.1021/jp981703u CrossRefGoogle Scholar
  37. 37.
    Fu, H., Zunger, A.: Excitons in InP quantum dots. Phys. Rev. B Condens. Matter Mater. Phys. 57, R15064–R15067 (1998).  https://doi.org/10.1103/PhysRevB.57.R15064 ADSCrossRefGoogle Scholar
  38. 38.
    Babichev, A.P.: Handbook of Physical Quantities. In: Grigor’ev, I.S., Meilikhov E.Z. (eds.) Energoatomizdat, Moscow (1991). (in Russian)Google Scholar
  39. 39.
    Baskoutas, S., Terzis, A.F.: Size-dependent band gap of colloidal quantum dots. J. Appl. Phys. 99, 013708 (2006).  https://doi.org/10.1063/1.2158502 ADSCrossRefGoogle Scholar
  40. 40.
    Fu, H., Wang, L.W., Zunger, A.: Applicability of the k∙p method to the electronic structure of quantum dots. Phys. Rev. B. 57, 9971–9987 (1998).  https://doi.org/10.1103/PhysRevB.57.9971 ADSCrossRefGoogle Scholar
  41. 41.
    Kayanuma, Y., Momiji, H.: Incomplete confinement of electrons and holes in microcrystals. Phys. Rev. B. 41, 10261–10263 (1990).  https://doi.org/10.1103/PhysRevB.41.10261 ADSCrossRefGoogle Scholar
  42. 42.
    Pellegrini, G., Mattei, G., Mazzoldi, P.: Finite depth square well model: applicability and limitations. J. Appl. Phys. 97, 073706 (2005).  https://doi.org/10.1063/1.1868875 ADSCrossRefGoogle Scholar
  43. 43.
    Baskoutas, S., Terzis, A.F.: Size dependent exciton energy of various technologically important colloidal quantum dots. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 147, 280–283 (2008).  https://doi.org/10.1016/j.mseb.2007.09.041 CrossRefGoogle Scholar
  44. 44.
    Weller, H., Koch, U., Gutierrez, M., Henglein, A.: Photochemistry of colloidal metal sulfides. 7. Absorption and fluorescence of extremely small ZnS particles (the world of the neglected dimensions). Berichte der Bunsengesellschaft/Physical Chemistry Chemical Physics. 88, 649–656 (1984).  https://doi.org/10.1002/bbpc.19840880715 CrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Ma, M., Wang, X., Fu, D., Gu, N., Liu, J., Lu, Z., Ma, Y., Xu, L., Chen, K.: First-order hyperpolarizability of ZnS nanocrystal quantum dots studied by hyper-Rayleigh scattering. J. Phys. Chem. Solids. 63, 2115–2118 (2002).  https://doi.org/10.1016/S0022-3697(02)00259-7 ADSCrossRefGoogle Scholar
  46. 46.
    Kho, R., Torres-Martınez, C.L., Mehra, R.K.: A simple colloidal synthesis for gram-quantity production of water-soluble ZnS nanocrystal powders. J. Colloid Interface Sci. 227, 561–566 (2000).  https://doi.org/10.1006/jcis.2000.6894 ADSCrossRefGoogle Scholar
  47. 47.
    Norris, D.J., Sacra, A., Murray, C.B., Bawendi, M.G.: Measurement of the size dependent hole spectrum in CdSe quantum dots. Phys. Rev. Lett. 72, 2612–2615 (1994).  https://doi.org/10.1103/PhysRevLett.72.2612 ADSCrossRefGoogle Scholar
  48. 48.
    Woggon, U., Gaponenko, S.V.: Excitons in quantum dots. Phys. Status. Solidi B Basic Res. 189, 285–343 (1995).  https://doi.org/10.1002/pssb.2221890202 ADSCrossRefGoogle Scholar
  49. 49.
    Vainshtein, I.A., Zatsepin, A.F., Kortov, V.S.: Applicability of the empirical Varshni relation for the temperature dependence of the width of the band gap. Phys. Solid State. 41, 905–908 (1999).  https://doi.org/10.1134/1.1130901 ADSCrossRefGoogle Scholar
  50. 50.
    Varshni, Y.P.: Temperature dependence of the energy gap in semiconductors. Physica. 34, 149–154 (1967).  https://doi.org/10.1016/0031-8914(67)90062-6 ADSCrossRefGoogle Scholar
  51. 51.
    Fan, H.Y.: Temperature dependence of the energy gap in semiconductors. Phys. Rev. 82, 900–905 (1951).  https://doi.org/10.1103/PhysRev.82.900 ADSCrossRefzbMATHGoogle Scholar
  52. 52.
    Skettrup, T.: Urbach’s rule derived from thermal fluctuations in the band-gap energy. Phys. Rev. B. 18, 2622–2631 (1978).  https://doi.org/10.1103/PhysRevB.18.2622 ADSCrossRefGoogle Scholar
  53. 53.
    Fan, H.Y.: Photon-Electron Interaction: Crystals Without Fields. Springer, Berlin (1967).  https://doi.org/10.1007/978-3-642-46074-6_3 CrossRefGoogle Scholar
  54. 54.
    Manoogian, A., Wooley, J.C.: Temperature dependence of the energy gap in semiconductors. Can. J. Phys. 62, 285–287 (1984).  https://doi.org/10.1139/p84-043 ADSCrossRefGoogle Scholar
  55. 55.
    Viña, L., Logothetidis, S., Cardona, M.: Temperature dependence of the dielectric function of germanium. Phys. Rev. B. 30, 1979–1991 (1984).  https://doi.org/10.1103/PhysRevB.30.1979 ADSCrossRefGoogle Scholar
  56. 56.
    Zilli, A., De Luca, M., Tedeschi, D., Fonseka, H.A., Miriametro, A., Tan, H.H., Jagadish, C., Capizzi, M., Polimeni, A.: Temperature dependence of interband transitions in wurtzite InP nanowires. ACS Nano. 9, 4277–4287 (2015).  https://doi.org/10.1021/acsnano.5b00699 CrossRefGoogle Scholar
  57. 57.
    O’Donnell, K.P., Chen, X.: Temperature dependence of semiconductor band gaps. Appl. Phys. Lett. 58, 2924–2926 (1991).  https://doi.org/10.1063/1.104723 ADSCrossRefGoogle Scholar
  58. 58.
    Chen, L., Bao, H., Tan, T., Prezhdo, O.V., Ruan, X.: Shape and temperature dependence of hot carrier relaxation dynamics in spherical and elongated CdSe quantum dots. J. Phys. Chem. C. 115, 11400–11406 (2011).  https://doi.org/10.1021/jp201408m CrossRefGoogle Scholar
  59. 59.
    Olkhovets, A., Hsu, R.-C., Lipovskii, A., Wise, F.W.: Size-dependent temperature variation of the energy gap in lead-salt quantum dots. Phys. Rev. Lett. 81, 3539–3542 (1998).  https://doi.org/10.1103/PhysRevLett.81.3539 ADSCrossRefGoogle Scholar
  60. 60.
    Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A.: Temperature dependence of the optical absorption spectra of InP/ZnS quantum dots. Tech. Phys. Lett. 43, 297–300 (2017).  https://doi.org/10.1134/S1063785017030221 ADSCrossRefGoogle Scholar
  61. 61.
    Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A.: Temperature-induced shift of the exciton absorption band in InP/ZnS quantum dots. Optic. Mater. Express. 7, 354–359 (2017).  https://doi.org/10.1364/OME.7.000354 ADSCrossRefGoogle Scholar
  62. 62.
    Alfrey, G.F., Borcherds, P.H.: Phonon frequencies from the Raman spectrum of indium phosphide. J. Phys. C Solid State Phys. 5, L275–L278 (1972).  https://doi.org/10.1088/0022-3719/5/20/002 ADSCrossRefGoogle Scholar
  63. 63.
    Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A.: Effect of temperature on the spectral properties of InP/ZnS nanocrystals. J. Phys. Conf. Ser. 961, 012003 (2018).  https://doi.org/10.1088/1742-6596/961/1/012003 CrossRefGoogle Scholar
  64. 64.
    Turner, W.J., Reese, W.E., Pettit, G.D.: Exciton absorption and emission in InP. Phys. Rev. 136, A1467–A1470 (1964).  https://doi.org/10.1103/PhysRev.136.A1467 ADSCrossRefGoogle Scholar
  65. 65.
    Savchenko, S.S., Weinstein, I.A.: Inhomogeneous broadening of the exciton band in optical absorption spectra of InP/ZnS nanocrystals. Nano. 9, 716 (2019).  https://doi.org/10.3390/nano9050716 CrossRefGoogle Scholar
  66. 66.
    Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A.: Spectral features and luminescence thermal quenching of InP/ZnS quantum dots within 7.5–295 K range. Optics InfoBase Conference Papers Part F107-NOMA 2018. 140118 (2018).  https://doi.org/10.1364/NOMA.2018.NoW1J.4
  67. 67.
    Savchenko, S.S., Vokhmintsev, A.S., Weinstein, I.A.: Photoluminescence thermal quenching of yellow-emitting InP/ZnS quantum dots. AIP Conf. Proc. 2015(020085), (2018).  https://doi.org/10.1063/1.5055158
  68. 68.
    Woggon, U., Gaponenko, S.V., Uhrig, A., Langbein, W., Klingshirn, C.: Homogeneous linewidth and relaxation of excited hole states in II–VI quantum dots. Adv. Mater. Opt. Electron. 3, 141–150 (1994).  https://doi.org/10.1002/amo.860030121 CrossRefGoogle Scholar
  69. 69.
    Vaganov, S.A., Seisyan, R.P.: Temperature-dependent integral exciton absorption in semi-conducting InP crystals. Tech. Phys. Lett. 38, 121–124 (2012).  https://doi.org/10.1134/S1063785012020174 ADSCrossRefGoogle Scholar
  70. 70.
    Lee, D., Johnson, A.M., Zucker, J.E., Feldman, R.D., Austin, R.F.: Room temperature ex-citonic absorption in CdZnTe/ZnTe quantum wells: contributions to exciton linewidth. J. Appl. Phys. 69, 6722–6724 (1991).  https://doi.org/10.1063/1.348895 ADSCrossRefGoogle Scholar
  71. 71.
    Weinstein, I.A., Zatsepin, A.F., Shchapova, Y.V.: The phonon-assisted shift of the energy levels of localized electron states in statically disordered solids. Physica B. 263–264, 167–169 (1999).  https://doi.org/10.1016/S0921-4526(98)01213-7 ADSCrossRefGoogle Scholar
  72. 72.
    Weinstein, I.A., Zatsepin, A.F.: Modified Urbach’s rule and frozen phonons in glasses. Phys. Status Solidi C. 1, 2916–2919 (2004).  https://doi.org/10.1002/pssc.200405416 ADSCrossRefGoogle Scholar
  73. 73.
    Skuja, L.: Defect studies in vitreous silica and related materials: optically active oxygen-deficiency-related centers in amorphous silicon dioxide. J. Non-Cryst. Solids. 239, 16–48 (1998).  https://doi.org/10.1016/0925-8388(96)02241-4 ADSCrossRefGoogle Scholar
  74. 74.
    Salvador, M.R., Graham, M.W., Scholes, G.D.: Exciton-phonon coupling and disorder in the excited states of CdSe colloidal quantum dots. J. Chem. Phys. 125, 184709 (2006).  https://doi.org/10.1063/1.2363190 ADSCrossRefGoogle Scholar
  75. 75.
    Rudin, S., Reinecke, T.L., Segall, B.: Temperature-dependent exciton linewidths in semiconductors. Phys. Rev. B. 42, 11218–11231 (1990).  https://doi.org/10.1103/PhysRevB.42.11218 ADSCrossRefGoogle Scholar
  76. 76.
    Weinstein, I.A., Zatsepin, A.F., Kortov, V.S.: Effects of structural disorder and Urbach’s rule in binary lead silicate glasses. J. Non-Cryst. Solids. 279, 77–87 (2001).  https://doi.org/10.1016/S0022-3093(00)00396-3 ADSCrossRefGoogle Scholar
  77. 77.
    Cui, J., Beyler, A.P., Marshall, L.F., Chen, O., Harris, D.K., Wanger, D.D., Brokmann, X., Bawendi, M.G.: Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 5, 602–606 (2013).  https://doi.org/10.1038/nchem.1654 CrossRefGoogle Scholar
  78. 78.
    Mićić, O.I., Curtis, C.J., Jones, K.M., Sprague, J.R., Nozik, A.J.: Synthesis and characterization of InP quantum dots. J. Phys. Chem. 98, 4966–4969 (1994).  https://doi.org/10.1021/j100070a004 CrossRefGoogle Scholar
  79. 79.
    Arias-Cerón, J.S., González-Araoz, M.P., Bautista-Hernández, A., Sánchez Ramírez, J.F., Herrera-Pérez, J.L., Mendoza-Álvarez, J.G.: Semiconductor nanocrystals of InP@ZnS: synthesis and characterization. Superf. y Vacío. 25, 134–138 (2012)Google Scholar
  80. 80.
    Shen, W., Tang, H., Yang, X., Cao, Z., Cheng, T., Wang, X., Tan, Z., You, J., Deng, Z.: Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes. J. Mater. Chem. C. 5, 8243–8249 (2017).  https://doi.org/10.1039/c7tc02927f CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergey Savchenko
    • 1
  • Alexander Vokhmintsev
    • 1
  • Ilya Weinstein
    • 1
    Email author
  1. 1.NANOTECH CentreUral Federal UniversityEkaterinburgRussia

Personalised recommendations