Advertisement

Design, Synthesis, and Properties of I-III-VI2 Chalcogenide-Based Core-Multishell Nanocrystals

  • V. Renuga
  • C. Neela Mohan
Chapter
  • 8 Downloads
Part of the Lecture Notes in Nanoscale Science and Technology book series (LNNST, volume 28)

Abstract

This chapter describes the design and properties of ternary CuInS2- and AgInS2-based core/shell and core-multishell nanocrystals (QDs – quantum dots) considering these ternary materials as core. The focus of this chapter is to deal with the utilization of the full potential of these ternary chalcogenides as an alternative to the existing toxic nanocrystals systems and further improve their optical properties as well as intensity by architecting the core/shell structure. Hot-injection method plays a vital role to architect such highly crystalline nanocrystals with controllability of size. To enhance the luminescence property of these core materials, they are either passivated by wider-bandgap ZnS shell or doped with highly luminescent Mn2+ and Cd2+ ions or combination of these two effects on the surface of core materials. The influence of dopant as shell materials (MnS and ZnS) are also analyzed by architecting core-multishell nanocrystals. The crystal structure, optical properties, and morphologies of the core, core/shell, and core-multishell nanocrystals are analyzed and described in detail in this chapter.

Keywords

Core/shell Ternary chalcogenides Nanocrystals Core-multishell Luminescence 

References

  1. 1.
    Zhanga, Q., Cao, G.: Hierarchically structured photoelectrodes for dye-sensitized solar cells. J. Mater. Chem. 21, 6769–6774 (2011)Google Scholar
  2. 2.
    Henglein, A.: Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89(8), 1861–1873 (1989)Google Scholar
  3. 3.
    Spanhel, L., Weller, H., Henglein: Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. J. Am. Chem. Soc. 109(22), 6632–6635 (1987)Google Scholar
  4. 4.
    Radi, A., et al.: Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu−Cu2O core−shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition. ACS Nano. 4(3), 1553–1560 (2010)Google Scholar
  5. 5.
    Zhao, H., Chaker, M., Ma, D.: Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots. J. Mater. Chem. 21, 17483–17491 (2011)Google Scholar
  6. 6.
    Lambert, K., Geyter, B.D., Moreels, I., Hens, Z.: PbTe|CdTe core|shell particles by cation exchange, a HR-TEM study. Chem. Mater. 21, 778–780 (2009)Google Scholar
  7. 7.
    Peng, X., et al.: Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119(30), 7019–7029 (1997)Google Scholar
  8. 8.
    Hines, M.A., Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)Google Scholar
  9. 9.
    Vasudevan, D., et al.: Core-shell quantum dots: properties and applications. J. Alloys Compd. 636, 395–404 (2015)Google Scholar
  10. 10.
    Eychm€uller, A., Mews, A., Weller, H.: A quantum dot quantum well: CdS/HgS/CdS. Chem. Phys. Lett. 208, 59–62 (1993)ADSGoogle Scholar
  11. 11.
    Renuga, V., Neela Mohan, C., Mohamed Jaabir, M.S., Arul Prakash, P., Navaneethan, M.: Synthesis and surface passivation of CuInS2/MnS/ZnS Core-multishell nanocrystals, their optical, structural, and morphological characterization, and their bioimaging applications. Ind. Eng. Chem. Res. 57, 15703–11572 (2018)Google Scholar
  12. 12.
    Asgary, S., Mirabbaszadeh, K., Nayebi, P., Emadi, H.: Synthesis and investigation of optical properties of TOPO-capped CuInS2 semiconductor nanocrystal in the presence of different solvent. Mater. Res. Bull. 51, 411 (2014)Google Scholar
  13. 13.
    Nag, A., Sarma, D.D.: White light from Mn2+-doped CdS nanocrystals. J. Phys. Chem. C. 111, 641 (2007)Google Scholar
  14. 14.
    Castro, S.L., Bailey, S.G., Raffaelle, R.P., Banger, K.K., Hepp, A.F.: Synthesis and characterization of colloidal CuInS2 nanoparticles from a molecular single-source precursor. J. Phys. Chem. B. 108, 12429 (2004)Google Scholar
  15. 15.
    Yu, X.F., Peng, X.N., Chen, Z.Q., Lian, C., Su, X.R., Li, J.B., Li, M., Liu, B.L., Wang, Q.Q.: High temperature sensitivity of manganese-assisted excitonic photoluminescence from inverted core/shell ZnSe:Mn/CdSe nanocrystals. Appl. Phys. Lett. 96, 123104 (2010)ADSGoogle Scholar
  16. 16.
    Vlaskin, V.A., Janssen, N., van Rijssel, J., Beaulac, R., Gamelin, D.R.: Tunable dual emission in doped semiconductor nanocrystals. Nano Lett. 10, 3670 (2010)ADSGoogle Scholar
  17. 17.
    Quan, Z.N., Wang, Z.L., Yang, D.P., Lin, J., Fang, J.Y.: Synthesis and characterization of high quality ZnS, ZnS:Mn2+, and ZnS:Mn2+/ZnS (core/shell) luminescent nanocrystals. Inorg. Chem. 46, 1354 (2007)Google Scholar
  18. 18.
    Nam, D.E., Song, W.S., Yang, H.: Facile, air-insensitive solvothermal synthesis of emission-tunable CuInS2/ZnS quantum dots with high quantum yields. J. Mater. Chem. 21, 18220 (2011)Google Scholar
  19. 19.
    Hua, J., Zhang, Y., Yuan, X., Cheng, H., Meng, X., Zhao, J., Li, H.: Photoluminescence properties of Cu–Mn–In–S/ZnS core/shell quantum dots. Superlattice. Microst. 73, 214 (2014)ADSGoogle Scholar
  20. 20.
    Li, M., Zhao, Q., Yi, X., Zhong, X., Song, G., Chai, Z., Liu, Z., Yang, K.: Au@MnS@ZnS core/shell/shell nanoparticles for magnetic resonance imaging and enhanced cancer radiation therapy. ACS Appl. Mater. Interfaces. 8, 9557 (2016)Google Scholar
  21. 21.
    Zhang, R., Yang, P., Wang, Y.: Facile synthesis of CuInS2/ZnS quantum dots with highly near-infrared photoluminescence via phosphor-free process. J. Nanopart. Res. 15, 1910 (2013)ADSGoogle Scholar
  22. 22.
    Sitbon, G., Bouccara, S., Tasso, M., Francois, A., Bezdetnaya, L., Marchal, F., Beaumonte, M., Pons, T.: Multimodal Mn-doped I–III–VI quantum dots for near infrared fluorescence and magnetic resonance imaging: from synthesis to in vivo application. Nanoscale. 6, 9264 (2014)ADSGoogle Scholar
  23. 23.
    Park, J., Kim, S.W.: CuInS2/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence. J. Mater. Chem. 21, 3745 (2011)Google Scholar
  24. 24.
    Xing, H., Wei, T., Lin, X., Dai, Z.: Near-infrared MnCuInS/ZnS@BSA and urchin-like Au nanoparticle as a novel donor-acceptor pair for enhanced FRET biosensing. Anal. Chim. Acta. 1042, 71 (2018)ADSGoogle Scholar
  25. 25.
    Liu, W., Zhang, Y., Zhai, W., Wang, Y., Zhang, T., Gu, P., Chu, H., Zhang, H., Cui, T., Wang, Y., Zhao, J., Yu, W.W.: Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots. J. Phys. Chem. C. 117, 19288 (2013)Google Scholar
  26. 26.
    Sun, J., Ikezawa, M., Wang, X., Jing, P., Li, H., Zhao, J., Masumoto, Y.: Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots. Phys. Chem. Chem. Phys. 17, 11981 (2015)Google Scholar
  27. 27.
    Jo, D.Y., Yang, H.: Synthesis of highly white-fluorescent CuGaS quantum dots for solid-state lighting devices. Chem. Commun. 52, 709 (2016)Google Scholar
  28. 28.
    Jo, D.Y., Kim, D., Kim, J.H., Chae, H., Seo, H.J., Do, Y.Y., Yang, H.: Tunable white fluorescent copper gallium sulfide quantum dots enabled by Mn doping. ACS Appl. Mater. Interfaces. 8, 12291 (2016)Google Scholar
  29. 29.
    Jiang, T., Zhang, W., Song, J., Yang, M., Wang, H., Xia, R., Ye, X., Zhu, L., Wang, H., Xu, X.: Aqueous synthesis of color tunable Cu doped Zn–In–S/ZnS nanoparticles in the whole visible region for cellular imaging. J. Mater. Chem. B. 3, 2402 (2015)Google Scholar
  30. 30.
    Langer, D., Richter, H.: Zero-phonon lines and phonon coupling of ZnSe: Mn and CdS: Mn. Phys. Rev. 146, 554 (1966)ADSGoogle Scholar
  31. 31.
    Beaulac, R., Archer, P.I., Liu, X., Lee, S., Salley, G.M., Dobrowolska, M., Furdyna, J.K., Gamelin, D.R.: Spin-polarizable excitonic luminescence in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 8, 1197 (2008)ADSGoogle Scholar
  32. 32.
    Hazarika, A.: Ultra narrow and widely tunable Mn2+-induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys. Phys. Rev. Lett. 110, 267401 (2013)ADSGoogle Scholar
  33. 33.
    Yang, Y., Chen, O., Angerhofer, A., Cao, Y.C.: On doping CdS/ZnS core/shell nanocrystals with Mn. J. Am. Chem. Soc. 130, 15649 (2008)Google Scholar
  34. 34.
    Zhang, J., Xie, R., Yang, W.: A simple route for highly luminescent quaternary Cu-Zn-In-S nanocrystal emitters. Chem. Mater. 23, 3357 (2011)Google Scholar
  35. 35.
    Zheng, J., Ji, W., Wang, X., Ikezawa, M., Jing, P., Liu, X., Li, H., Zhao, J., Masumoto, Y.: Improved photoluminescence of MnS/ZnS core/shell nanocrystals by controlling diffusion of Mn ions into the ZnS shell. J. Phys. Chem. C. 114, 15331 (2010)Google Scholar
  36. 36.
    Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G.: (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 101, 9463 (1997)Google Scholar
  37. 37.
    Steckel, J.S., Zimmer, J.P., Coe-Sullivan, S., Stott, N.E., Bulovic, V., Bawendi, M.G.: Blue luminescence from (CdS)ZnS core-shell nanocrystals. Angew. Chem. Int. Ed. 43, 2154 (2004)Google Scholar
  38. 38.
    Eychmuller, A.: Structure and photophysics of semiconductor nanocrystals. J. Phys. Chem. B. 104, 6514 (2000)Google Scholar
  39. 39.
    Lad, A.D., Mahamuni, S.: Effect of ZnS shell formation on the confined energy levels of ZnSe quantum dots. Phys. Rev. B. 78, 125421 (2008)ADSGoogle Scholar
  40. 40.
    Lee, J.W., Hall, A.S., Kim, J.D., Mallouk, T.E.: A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem. Mater. 24, 1158 (2012)Google Scholar
  41. 41.
    Liu, Q., Deng, R., Ji, X., Pan, D.: Alloyed Mn–Cu–In–S nanocrystals: a new type of diluted magnetic semiconductor quantum dots. Nanotechnology. 23, 255706 (2012)ADSGoogle Scholar
  42. 42.
    Cao, S., Zheng, J., Zhao, J., Wang, L., Gao, F., Wei, G., Zeng, R., Tian, L., Yang, W.: Highly efficient and well-resolved Mn2+ ion emission in MnS/ZnS/CdS quantum dots. J. Mater. Chem. C. 1, 2540 (2013)Google Scholar
  43. 43.
    Zhang, G., Monllor-Satoca, D., Choi, W.: Band energy levels and compositions of CdS-based solid solution and their relation with photocatalytic activities. Cat. Sci. Technol. 3, 1790 (2013)Google Scholar
  44. 44.
    Feng, Z., Dai, P., Ma, X., Zhan, J., Lin, Z.: Monodispersed cation-disordered cubic AgInS2 nanocrystals with enhanced fluorescence. Appl. Phys. Lett. 96, 013104 (2010)ADSGoogle Scholar
  45. 45.
    Giribabu, K., Suresh, R., Manigandan, R., Vijayaraj, A., Prabu, R., Narayanan, V.: Cadmium sulphide nanorods: synthesis, characterization and their photocatalytic activity. Bull. Kor. Chem. Soc. 33, 9 (2012)Google Scholar
  46. 46.
    Orii, T., Kaito, S., Matsuishi, K., Onari, S., Arai, T.: Photoluminescence of CdS nanoparticles suspended in vacuum and its temperature increase by laser irradiation. J. Phys. Condens. Matter. 14, 9743 (2002)ADSGoogle Scholar
  47. 47.
    Yao, J., Zhao, G., Wang, D., Han, G.: Solvothermal synthesis and characterization of CdS nanowires/PVA composite films. Mater. Lett. 59, 3652 (2005)Google Scholar
  48. 48.
    Yang, P., Lu, M., Xu, D., Yuan, D., Zhou, G.: Synthesis and photoluminescence characteristics of doped ZnS nanoparticles. Appl. Phys. A Mater. Sci. Process. 73, 455 (2001)ADSGoogle Scholar
  49. 49.
    Lo, S.S., Mirkovic, T., Chuang, C.H., Burda, C., Scholes, G.D.: Emergent properties resulting from type-II band alignment in semiconductor nanoheterostructures. Adv. Mater. 23, 180 (2011)Google Scholar
  50. 50.
    Sivasubramanian, V., Arora, A.K., Premila, M., Sundar, C.S., Sastry, V.S.: Optical properties of CdS nanoparticles upon annealing. Phys. E. 31, 93 (2006)Google Scholar
  51. 51.
    Chen, M., Kim, Y.N., Li, C., Cho, S.O.: Controlled synthesis of hyperbranched cadmium sulfide micro/nanocrystals. Cryst. Growth Des. 8, 629 (2008)Google Scholar
  52. 52.
    Yao, W.T., Yu, S.H., Liu, S.J., Chen, J.P., Liu, X.M., Li, F.Q.: Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property. J. Phys. Chem. B. 110, 11704 (2006)Google Scholar
  53. 53.
    Chen, S., Zaeimian, M.S., Jorge, H.S.K., Monteiro, Zhao, J., Mamalis, A.G., A. de B-Dias, Zhu, X.: Mn doped AIZS/ZnS nanocrystals: synthesis and optical properties. J. Alloys Compd. 725, 1077 (2017)Google Scholar
  54. 54.
    Wang, X., Xie, C., Zhong, J., Liang, X., Xiang, W.: Synthesis and temporal evolution of Zn-doped AgInS2 quantum dots. J. Alloys Compd. 648, 127 (2015)Google Scholar
  55. 55.
    Podgurska, I., Rachkov, A., Borkovska, L.: Effect of Pb2+ ions on photoluminescence of ZnS-coated AgInS2 nanocrystals. Phys. Status Solidi A. 215, 1700450 (2017)ADSGoogle Scholar
  56. 56.
    Zeng, Z., Wang, A., Ping, L., Yang, J., Wang, Q.: Encapsulation of lanthanides in ternary I–III–VI AgInS2 nanocrystals and their physical properties. Mater. Lett. 141, 225 (2015)Google Scholar
  57. 57.
    Mao, B., Chuang, C.H., McCleese, C., Zhu, J., Burda, C.: Near-infrared emitting AgInS2/ZnS nanocrystals. J. Phys. Chem. C. 118, 13883 (2014)Google Scholar
  58. 58.
    Powder Diffraction File; The JCPDS International Centre for Diffraction Data: Swarthmore, PA, 1990; No. 251330Google Scholar
  59. 59.
    Hamanaka, Y., Yukitoki, D., Kuzuya, T.: Structural transformation and photoluminescence modification of AgInS2 nanoparticles induced by ZnS shell formation. Appl. Phys. Express. 8, 095001 (2015)ADSGoogle Scholar
  60. 60.
    Liao, S., Huang, Y., Zhang, Y., Shan, X., Yan, Z., Shen, W.: Highly enhanced photoluminescence of AgInS2/ZnS quantum dots by hot-injection method. Mater. Res. Express. 2, 015901 (2015)ADSGoogle Scholar
  61. 61.
    Tan, L., Liu, S., Li, X., Chronakis, I.S., Shen, Y.: A new strategy for synthesizing AgInS2 quantum dots emitting brightly in near-infrared window for in vivo imaging. Colloids Surf. B: Biointerfaces. 125, 222 (2015)Google Scholar
  62. 62.
    Ivanov, S.A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K.R., Wallace, W.O., Werder, D., Klimov, V.I.: Type-II core/shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708 (2007)Google Scholar
  63. 63.
    Zhong, H., Bai, Z., Zou, B.: Tuning the luminescence properties of colloidal I–III–VI semiconductor nanocrystals for optoelectronics and biotechnology applications. J. Phys. Chem. Lett. 3, 3167 (2012)Google Scholar
  64. 64.
    Park, Y.J., Oh, J.H., Han, N.S.: Photoluminescence of band gap states in AgInS2 nanoparticles. J. Phys. Chem. C. 118, 25677 (2014)Google Scholar
  65. 65.
    Terai, Y., Kuroda, S., Takita, K., Okuno, T., Masumoto, Y.: Zero-dimensional excitonic properties of self-organized quantum dots of CdTe grown by molecular beam epitaxy. Appl. Phys. Lett. 73, 3757 (1998)ADSGoogle Scholar
  66. 66.
    Gabka, G., Bujak, P., Kotwica, K., Ostrowski, A., Lisowski, W., Sobczakb, J.W., Prona, A.: Luminophores of tunable colors from ternary Ag–In–S and quaternary Ag–In–Zn–S nanocrystals covering the visible to near-infrared spectral range. Phys. Chem. Chem. Phys. 19, 1217 (2017)Google Scholar
  67. 67.
    Wang, S., Li, J.J., Lv, Y., Wu, R., Xing, M., Shen, H., Wang, H., Li, L.S., Chen, X.: Synthesis of reabsorption-suppressed type-II/type-I ZnSe/CdS/ZnS core/shell quantum dots and their application for immunosorbent assay. Nanoscale Res. Lett. 12, 380 (2017)ADSGoogle Scholar
  68. 68.
    Boldt, K., Schwarz, K.N., Kirkwood, N., Smith, T.A., Mulvaney, P.: Electronic structure engineering in ZnSe/CdS type-II nanoparticles by interface alloying. J. Phys. Chem. C. 118, 13276 (2014)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • V. Renuga
    • 1
  • C. Neela Mohan
    • 1
  1. 1.PG & Research Department of ChemistryNational College (Autonomous)TiruchirappalliIndia

Personalised recommendations