Advertisement

Improvement to the Analytical Method for Dam Breach Flood Evaluation

  • Zuyu ChenEmail author
  • Lin Wang
  • Xingbo Zhou
  • Shujing Chen
Conference paper
  • 78 Downloads
Part of the Springer Series in Geomechanics and Geoengineering book series (SSGG)

Abstract

This paper describes the improvements to the existing dam breach analysis methods based on back analyses of several giant barrier lake breaches. The main improvements include a hyperbolic soil erosion model, an empirical approach to lateral enlargement modeling, and a numerical algorithm that adopts velocity increment to allow straight forward calculation for the breach flood hydrograph. It has been shown that the calculated peak flow using this improved method is less sensitive to the input parameters. The new method has been incorporated into an Excel spreadsheet DB-IWHR which is transparent, open-source, self-explanatory and downloadable on the web.

Keywords

Dam breach Flood evaluation Soil erosion 

References

  1. 1.
    Chen, Z.Y., Ma, L.Q., Yu, S., Chen, S.J., Zhou, X.B., Sun, P., Li, X.: Back analysis of the draining process of the Tangjiashan barrier lake. J. Hydraul. Eng. 141(4), 05014011 (2015)CrossRefGoogle Scholar
  2. 2.
    Cristofano, E.A.: Method of Computing Erosion Rate of Failure of Earth Dams. U.S. Bureau of Reclamation, Denver (1965)Google Scholar
  3. 3.
    Harris, G.W.: Outflow from breached earth dams. Doctoral Dissertation, Department of Civil Engineering, University of Utah, Salt Lake City (1967)Google Scholar
  4. 4.
    Brown, R.J., Rogers, D.C.: A simulation of the hydraulic events during and following the Teton Dam Failure. In: Proceedings of Dam-Break Flood Routing Workshop, Washington, DC, pp. 131–163 (1977)Google Scholar
  5. 5.
    Fread, D.L.: BREACH: An Erosion Model for Earthen Dam Failures (Model Description and User Manual). National Oceanic and Atmospheric Administration, National Weather Service, Silver Spring (1988)Google Scholar
  6. 6.
    Wu, W.M.: Simplified physically based model of earthen embankment breaching. J. Hydraul. Eng. 139(8), 837–851 (2013)CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Zhang, Q., Chen, S., Wang, L., Zhou, X.: Evaluation of barrier lake breach floods: insights from recent case studies in China. Wiley Interdiscip. Rev.: Water 7(2) (2020).  https://doi.org/10.1002/wat2.1408CrossRefGoogle Scholar
  8. 8.
    Liu, N., Chen, Z.Y., Zhang, J.X., Wei, L., Chen, W., Xu, W.J.: Draining the Tangjiashan barrier lake. J. Hydraul. Eng. 136(11), 914–923 (2010)CrossRefGoogle Scholar
  9. 9.
    Zhou, X.B., Chen, Z.Y., Yu, S., Wang, L., Deng, G., Sha, P.J., Li, S.Y.: Risk analysis and emergency actions for Hongshiyan barrier lake. Nat. Hazards 79(3), 1933–1959 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, Z.Y,, Chen, S.S., Wang L., Zhong Q., Zhang Q., Jin, S.L.: Evaluation of the breach flood of the “11.03” Baige barrier lake at the Jinsha River. Sci. China Tech. Sci. (2020).  https://doi.org/10.1360/sst-2019-0297. (in Chinese)
  11. 11.
    Cai, Y.J., Cheng, H.Y., Wu, S.F., Yang, Q.G., Wang, L., Luan, Y.S., Chen, Z.Y.: Breaches of the Baige Barrier Lake: emergency response and dam breach flood. Sci. China Technol. Sci. (2019).  https://doi.org/10.1007/s11431-019-1475-yCrossRefGoogle Scholar
  12. 12.
    Hanson, G.J.: Channel erosion study of two compacted soils. Trans. ASAE 32(2), 485–0490 (1989)CrossRefGoogle Scholar
  13. 13.
    Zhang, L.M., Peng, M., Chang, D.S., Xu, Y.: Dam Failure Mechanisms and Risk Assessment. Wiley, Singapore (2016)CrossRefGoogle Scholar
  14. 14.
    Smart, G.M.: Sediment transport formula for steep channels. J. Hydraul. Eng. 110(3), 267–276 (1984)CrossRefGoogle Scholar
  15. 15.
    Brown, C.B.: Sediment transportation. In: Rouse, H. (ed.) Engineering Hydraulics, pp. 711–768. Wiley, New York (1950)Google Scholar
  16. 16.
    Singh, V.P.: Dam breaching modeling technology. Kluwer Academic Publishers, Dordrecht, Netherlands (1996)CrossRefGoogle Scholar
  17. 17.
    Engelund, F., Hansen, E.: A monograph on sediment transport in alluvial streams. Hydrotech. Constr. 33(7), 699–703 (1967)Google Scholar
  18. 18.
    Roberts, J., Jepsen, R., Gotthard, D., Lick, W.: Effects of particle size and bulk density on erosion of quartz particles. J. Hydraul. Eng. 124(12), 1261–1267 (1998)CrossRefGoogle Scholar
  19. 19.
    Zhou, X.B., Chen, Z.Y., Li, S.Y., Wang, L.: Comparison of sediment transport model in dam break simulation. J Basic Sci. Eng. 23(6), 1097–1108 (2015). (in Chinese)Google Scholar
  20. 20.
    Chen, Z.Y., Ma, L.Q., Yu, S., Chen, S.J., Zhou, X.B., Sun, P., Li, X.: Closure to “back analysis of the draining process of Tangjiashan barrier lake” by Zuyu Chen, Liqiu Ma, Shu Yu, Shujing Chen, Xingbo Zhou, Ping Sun, and Xu Li. J. Hydraul. Eng. 142(6), 07016002 (2016)CrossRefGoogle Scholar
  21. 21.
    Foster, G.R., Meyer, L.D., Onstad, C.A.: An erosion equation derived from basic erosion principles. Trans. ASAE 20(4), 678–0682 (1977)CrossRefGoogle Scholar
  22. 22.
    Temple, D.M.: Stability of grass lined channels following mowing. Trans. ASAE 28(3), 750–0754 (1985)CrossRefGoogle Scholar
  23. 23.
    Shaikh, A., Ruff, J.F., Abt, S.R.: Erosion rate of compacted Na-montmorillonite soils. J. Geotech. Eng. 114(3), 296–305 (1988)CrossRefGoogle Scholar
  24. 24.
    Hanson, G.J., Simon, A.: Erodibility of cohesive streambeds in the loess area of the midwestern USA. Hydrol. Process. 15(1), 23–38 (2001)CrossRefGoogle Scholar
  25. 25.
    Wan, C.F., Fell, R.: Investigation of rate of erosion of soils in embankment dams. J. Geotech. Geoenviron. 130(4), 373–380 (2004)CrossRefGoogle Scholar
  26. 26.
    Zhu, Y.H., Lu, J.Y., Liao, H.Z., Wang, J.S., Fan, B.L., Yao, S.M.: Research on cohesive sediment erosion by flow: an overview. Sci. China Ser. E. 51(11), 2001–2012 (2008)CrossRefGoogle Scholar
  27. 27.
    Chang, D.S., Zhang, L.M.: Simulation of the erosion process of landslide dams due to overtopping considering variations in soil erodibility along depth. Nat. Hazard Earth Syst. Sci. 10(4), 933–946 (2010)CrossRefGoogle Scholar
  28. 28.
    Ma, L.Q.: Flood analysis of landslide dam breach. Post-Doctoral Dissertation, China Institute of Water Resources and Hydropower Research, Beijing (2014). (in Chinese)Google Scholar
  29. 29.
    Singh, V.P., Scarlatos, P.D.: Analysis of gradual earth-dam failure. J. Hydraul. Eng. 114(1), 21–42 (1988)CrossRefGoogle Scholar
  30. 30.
    Wang, L., Chen, Z.Y., Wang, N.X., Sun, P., Yu, S., Li, S.Y., Du, X.H.: Modeling lateral enlargement in dam breaches using slope stability analysis based on circular slip mode. Eng. Geol. 209, 70–81 (2016)CrossRefGoogle Scholar
  31. 31.
    Osman, A.M., Thorne, C.R.: Riverbank stability analysis. I: Theory. J. Hydraul. Eng. ASCE 114(2), 134–150 (1988)CrossRefGoogle Scholar
  32. 32.
    Duncan, J.: State of the art: limit equilibrium and finite-element analysis of slopes. J. Geotech. Eng. 122(7), 577–596 (1996)CrossRefGoogle Scholar
  33. 33.
    Chen, Z.Y., Shao, C.M.: Evaluation of minimum factor of safety in slope stability analysis. Can. Geotech. J. 25(4), 735–748 (1988)CrossRefGoogle Scholar
  34. 34.
    Sherard, J., Woodward, R., Gzienski, S., Clevenger, W.: Failures and damages. In: Earth and Earth-Rock Dams, 1st edn, pp. 130–131. Wiley, New York (1963)Google Scholar
  35. 35.
    Lowe, J., Karafiath, L.: Stability of earth dam upon drawdown. In: First Pan-American Conference on Soil Mechanics and Foundation Engineering, Mexico City, vol. 2, pp. 537–552 (1960)Google Scholar
  36. 36.
    Johnson, J.J.: Analysis and design relating to embankments. In: Proceedings, Conference on Analysis and Design in Geotechnical Engineering, vol. 2, pp. 1–48. ASCE, New York (1974)Google Scholar
  37. 37.
    Chen, Z.Y., Ping, Z.Y., Wang, N.X., Yu, S., Chen, S.J.: An approach to quick and easy evaluation of the dam breach flood. Sci. China Tech. Sci. 62(10), 1773–1782 (2019)CrossRefGoogle Scholar
  38. 38.
    Jack, R.: The mechanics of embankment failure due to overtopping flow. Doctoral dissertation, University of Auckland, Auckland, New Zealand (1996)Google Scholar
  39. 39.
    Chow, V.T.: Open-Channel Hydraulics. McGraw Hill, New York (1959)Google Scholar
  40. 40.
    Doeringsfeld, H.A., Barker, C.L.: Pressure momentum theory applied to the broad crested weir. Trans. ASCE 106, 934–969 (1941)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Zuyu Chen
    • 1
    Email author
  • Lin Wang
    • 2
  • Xingbo Zhou
    • 3
  • Shujing Chen
    • 4
  1. 1.Department of Geotechnical EngineeringChina Institute of Water Resources and Hydropower ResearchBeijingChina
  2. 2.College of Water Resources and Hydropower EngineeringXi’an University of TechnologyXi’anChina
  3. 3.China Renewable Energy Engineering InstituteBeijingChina
  4. 4.National Academy for Mayors of ChinaBeijingChina

Personalised recommendations