Advertisement

Forensic Geophysical Data Processing and Interpretation

  • Giovanni LeucciEmail author
Chapter
  • 15 Downloads

Abstract

Processing and interpretation of geophysical data determine the success or failure of an investigation in the forensic sciences. Furthermore to help data processing and interpretation is advisable the integration with other data (i.e., data from one or more geophysical techniques, investigators data, geological data, archaeological data, structural data, etc.). In this chapter will be discussed the methodologies and associated mathematical and physical parameters related to the processing of the geophysical data that can help in the resolution of forensic problems such as to individuate the presence of hidden objects.

Keywords

TDR Gravimetric Magnetic ERT SP Seismic ultrasonic GPR data processing and interpretation 

References

  1. Abdelrahman, E. M., Saber, H. S., Essa, K. S., & Fouda, M. A. (2004). A least-squares approach to depth determination from numerical horizontal self-potential gradients. Pure and Applied Geophysics, 161, 399–411.  https://doi.org/10.1007/s00024-003-2446-5.CrossRefGoogle Scholar
  2. Abdelrahman, E. M., & Sharafeldin, S. M. (1997). A least-squares approach to depth determination from residual self-potential anomalies caused by horizontal cylinders and spheres. Geophysics, 62, 44–48.  https://doi.org/10.1190/1.1444143.CrossRefGoogle Scholar
  3. Annan, A. P. (2005). Ground-penetrating radar. In D. K. Butler (Ed.), Near surface geophysics (Vol. 13, pp. 357–438). Society of exploration geophysicists: Tulsa, Investigations in Geophysics.Google Scholar
  4. Asfahani, J., & Tlas, M. (2005). A constrained nonlinear inversion approach to quantitative interpretation of self-potential anomalies caused by cylinders, spheres and sheet-like structures. Pure and Applied Geophysics, 162, 609–624.Google Scholar
  5. Baker, J. M., & Allmaras, R. R. (1990). System for automating and multiplexing soil moisture measurement by time-domain reflectometry. Soil Science Society of America Journal, 54, 1–6.  https://doi.org/10.2136/sssaj1990.03615995005400010001x.CrossRefGoogle Scholar
  6. Barnett, V., & Lewis, T. (1984). Outliers in statistical data. New York: Wiley.Google Scholar
  7. Bazán, F. S. V. (2008). Fixed-point iterations in determining the Tikhonov regularization parameter. Inverse Problems, 24, 035001. 15 pp.CrossRefGoogle Scholar
  8. Becker, H. (1995). From nanotesla to picotesla—A new window for magnetic prospecting in archaeology. Archaeological Prospection, 2, 217–228.Google Scholar
  9. Cassidy, N. J. (2009). Ground penetrating radar data processing, modelling and analysis. In H. M. Jol (Ed.), Ground penetrating radar: Theory and applications (pp. 141–176). Amsterdam: Elsevier.CrossRefGoogle Scholar
  10. Ciminale, M., & Loddo, M. (2001). Aspects of magnetic data processing archaeological prospection. Archaeological Prospection, 8, 239–246.CrossRefGoogle Scholar
  11. Claerbout, J. F., & Muir, F. (1973). Robust modeling with erratic data. Geophysics, 38, 826–844.CrossRefGoogle Scholar
  12. Clark, D. A., & Emerson, D. W. (1991). Notes on rock magnetization characteristics in applied geophysical studies. Exploration Geophysics, 22(3), 547–555.CrossRefGoogle Scholar
  13. Constable, S. C., Parker, R. L., & Constable, C. G. (1987). Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics, 52, 289–300.CrossRefGoogle Scholar
  14. Conyers, L. B. (2015a). Analysis and interpretation of GPR datasets for integrated archaeological mapping. Near Surface Geophysics, 13, 645–651.CrossRefGoogle Scholar
  15. Conyers, L. B. (2015b). Multiple GPR datasets for integrated archaeological mapping. Journal of Near Surface Geophysics, 13(3).Google Scholar
  16. Dalton, F. N., & van Genuchten, M Th. (1986). The time-domain reflectometry method for measuring soil water content and salinity. Geoderma, 38, 237–250.CrossRefGoogle Scholar
  17. Day-Lewis, F. D., Chen, Y., & Singha, K. (2007). Moment inference from tomograms. Geophysical Research Letters, 34, L22404.  https://doi.org/10.1029/2007gl031621, 6 p.
  18. Day-Lewis, F. D., Singha, K., & Binley, A. M. (2005). Applying petrophysical models to radar traveltime and electrical resistivity tomograms—Resolution-dependent limitations. Journal of Geophysical Research, 110, B08206.  https://doi.org/10.1029/2004jb005369, 17 p. 37.
  19. de Groot-Hedlin, C., & Constable, S. (1990). Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics, 55(12), 1613–1624.CrossRefGoogle Scholar
  20. Dijkstra, E. W. (1995). A note on two problems in connection with graphs. Numeriskche Mathematik, 1, 269–271.CrossRefGoogle Scholar
  21. Dines, K., & Lytle, J. R. (1979). Computerized geophysical tomography. In Proceedings of the IEEE (Vol. 67, No. 7), Luglio.Google Scholar
  22. Drahor, M. G. (2004). Application of the self‐potential method to archaeological prospection: Some case histories. Archaeological Prospection, 11(2), 77–105.Google Scholar
  23. Eder-Hinterleinter, A., Neubauer, W., & Melichar, P. (1996). Restoring magnetic anomalies. Archaeological Prospection, 3, 185–197.CrossRefGoogle Scholar
  24. El-Araby, H. M. (2004). A new method for complete quantitative interpretation of self-potential anomalies. Journal of Applied Geophysics, 55, 211–224.  https://doi.org/10.1016/j.jappgeo.2003.11.002.CrossRefGoogle Scholar
  25. Essa, K., Mehanee, S., & Smith, P. D. (2008). A new inversion algorithm for estimating the best fitting parameters of some geometrically simple body to measured self-potential anomalies. Exploration Geophysics, 39, 155–163.CrossRefGoogle Scholar
  26. Evett, S. R. (2000). The TACQ computer program for automatic time domain reflectometry measurements: II. Waveform interpretation methods. Transactions of the ASAE, 43, 1947–1956.  https://doi.org/10.13031/2013.3100.CrossRefGoogle Scholar
  27. Fedi, M., & Abbas, M. (2013). A fast interpretation of self-potential data using the depth from extreme points method. Geophysics, 78(2), E107–E116.  https://doi.org/10.1190/geo2012-0074.1.CrossRefGoogle Scholar
  28. Fitterman, D. V., & Corwin, R. F. (1982). Inversion of self-potential data from the Cerro Prieto geothermal field, Mexico. Geophysics, 47, 938–945.Google Scholar
  29. Goodman, D. (2013). GPR sim manual. http://www.gprsurvey.com/. Accessed June 2013.
  30. Gouveia, W. P., & Scales, J. A. (1997). Resolution of seismic waveform inversion–Bayes versus Occam. Inverse Problems, 13, 322–349.CrossRefGoogle Scholar
  31. Grant, F. S., & West, G. F. (1965). Interpretation theory in applied geophysics. New York: McGraw-Hill.Google Scholar
  32. Hammer, S. (1965). Terrain corrections for gravimeter stations. Geophysics, 4, 184–194.CrossRefGoogle Scholar
  33. Hansen, P. C. (2001). The L-curve and its use in the numerical treatment of inverse problems. In P. Johnston (Ed.), Computational inverse problems in electrocardiology (pp. 119–142). Southampton: WIT Press. (invited chapter).Google Scholar
  34. Hawkins, D. M. (1980). Identification of outliers. New York: Chapman and Hall.CrossRefGoogle Scholar
  35. Kitanidis, P. K. (1997). The minimum structure solution to the inverse problem. Water Resources Research, 33(10), 2263–2272.CrossRefGoogle Scholar
  36. Leucci, G. (2015). Geofisica Applicata all’Archeologia e ai Beni Monumentali (p. 368). Palermo: Dario Flaccovio Editore. ISBN: 9788857905068.Google Scholar
  37. Leucci, G. (2019). Nondestructive testing for archaeology and cultural heritage: A practical guide and new perspectives. Springer International Publishing.Google Scholar
  38. Leucci, G., & De Giorgi, L. (2015). 2D AND 3D seismic measurements to evaluate the collapse risk of cave in soft carbonate rock. Central European Journal of Geosciences, 7(1), 84–94.  https://doi.org/10.1515/geo-2015-0006.CrossRefGoogle Scholar
  39. Leucci, G., De Giorgi, L., & Scardozzi, G. (2014). Geophysical prospecting and remote sensing for the study of the San Rossore area in Pisa (Tuscany, Italy). Journal of Archaeological Science, 52, 256–276.  https://doi.org/10.1016/j.jas.2014.08.028.CrossRefGoogle Scholar
  40. Leucci, G., Greco, F., De Giorgi, L., & Mauceri, R. (2007). Three-dimensional image of seismic refraction tomography and electrical resistivity tomography survey in the castle of Occhiola (Sicily, Italy). Journal of Archaeological Science, 34, 233–242.  https://doi.org/10.1016/j.jas.2006.04.010.CrossRefGoogle Scholar
  41. Longman, I. M. (1959). Formulas for computing the tidal accelerations due to the Moon and the Sun. Journal Geophysical Research, 64(12), 2351–2355.  https://doi.org/10.1029/JZ064i012p02351.CrossRefGoogle Scholar
  42. Menke, W. (1989). Geophysical data analysis: Discrete inverse theory. International Geophysics Series (Vol. 45, 1989). Academic Press.Google Scholar
  43. Monteiro Santos, F. A. (2010). Inversion of self-potential of idealized bodies anomalies using particle swarm optimization. Computers & Geosciences, 36, 1185–1190.CrossRefGoogle Scholar
  44. Musset, A. E., & Khan, M. A. (2000). Looking into the Earth. New York, USA: Cambridge University Press.CrossRefGoogle Scholar
  45. Nettleton, L. L. (1976). Gravity and magnetics in oil prospecting (2nd ed). New York: McGraw-Hill, Publishing Co. Google Scholar
  46. Nolet, G. (1987). Seismic tomography with applications in global seismology and exploration geophysics. D. Reidel Publishing Company.Google Scholar
  47. Nuzzo, L., Leucci, G., Negri, S., Carrozzo, M. T., & Quarta, T. (2002). Application of 3d visualization techniques in the analysis of GPR data for archaeology. Annals of Geophysics, 45(2), 321–337.Google Scholar
  48. Or, D., Jones, S. B., Van Shaar, J. R., Humphries, S., & Koberstein, L. (2004). User’s guide WinTDR. Version 6.1. Utah State University, Logan. http://www.usu.edu/soilphysics/wintdr/documentation.cfm.
  49. Patella, D. (1997). Self‐potential global tomography including topographic effects. Geophysical Prospecting, 843–863.Google Scholar
  50. Reginska, T. (1996). A regularization parameter in discrete ill-posed problems. SIAM Journal on Scientific Computing, 3, 740–749.CrossRefGoogle Scholar
  51. Revil, A., Ehouarne, L., & Thyreault, E. (2001). Tomography of self-potential anomalies of electrochemical nature. Geophysical Research Letters, 28, 4363–4366.CrossRefGoogle Scholar
  52. Sandmeier, K. J. (2013). Reflexw 7.0 manual. Karlsruhe: Sandmeier Software.Google Scholar
  53. Sasaki, Y. (1992). Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, 40, 453–464.CrossRefGoogle Scholar
  54. Schwartz, R. C., Casanova, J. J., Bell, J. M., & Evett, S. R. (2013). A reevaluation of time domain reflectometry propagation time determination in soils. Vadose Zone Jounal, 13, 1–13.  https://doi.org/10.2136/vzj2013.07.0135.CrossRefGoogle Scholar
  55. Scollar, I., Tabbagh, A., Hesse, A., & Herzog, I. (1990). Archaeological prospecting and remote sensing. Cambridge: Cambridge University Press.Google Scholar
  56. Tarantola, A. (1987a). Inverse problem theory and methods for data fitting and model parameter estimation (613 p.). Amsterdam: Elsevier.Google Scholar
  57. Tarantola, A. (1987b). Inverse problem theory (613 pp.). Elsevier, New York.Google Scholar
  58. Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics. New York: Cambridge University Press.CrossRefGoogle Scholar
  59. Tikhonov, A. N., & Arsenin, V. Y. (1977a). Solutions of ill-posed problems. Washington DC: Winston and Sons.Google Scholar
  60. Tikhonov, A. N., & Arsenin, V. Y. (1977b). Solutions of ill-posed problems. New York: Wiley.Google Scholar
  61. Tikhonov, A. N., Leonov, A. S., Yagola, A. G. (1998). Nonlinear ill-posed problems (Vols. 1 and 2). London: Chapman and Hall.Google Scholar
  62. Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582.CrossRefGoogle Scholar
  63. Topp, G. C., Yanuka, M., Zebchuk, W. D., & Zegelin, S. (1988). Determination of electrical conductivity using time domain reflectometry: Soil and water experiments in coaxial lines. Water Resources Research, 24, 939–944.CrossRefGoogle Scholar
  64. Tripp, A. C., Hohmann, G. W., & Swift, C. M., Jr. (1984). Two-dimensional resistivity inversion. Geophysics, 49(10), 1708–1717.CrossRefGoogle Scholar
  65. Vasco, D. W., Datta-Gupta, A., & Long, J. C. S. (1997). Resolution and uncertainty in hydrologic characterization. Water Resources Research, 33(3), 379–397.CrossRefGoogle Scholar
  66. Yanuka, M., Topp, G. C., Zegelin, S., & Zebchuk, W. D. (1988). Multiple reflection and attenuation of time domain reflectometry pulses: Theoretical considerations for applications to soil and water. Water Resources Research, 24, 945–952.CrossRefGoogle Scholar
  67. Yungul, S. (1950). Interpretation of spontaneous-polarization anomalies caused by spherical ore bodies. Geophysics, 15, 237–246.Google Scholar
  68. Zhdanov, M. S. (2002). Geophysical inversion theory and regularization problems. Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Cultural Heritage SciencesNational Research CouncilLecceItaly

Personalised recommendations