Node Classification for Signed Social Networks Using Diffuse Interface Methods

  • Pedro MercadoEmail author
  • Jessica Bosch
  • Martin Stoll
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11906)


Signed networks contain both positive and negative kinds of interactions like friendship and enmity. The task of node classification in non-signed graphs has proven to be beneficial in many real world applications, yet extensions to signed networks remain largely unexplored. In this paper we introduce the first analysis of node classification in signed social networks via diffuse interface methods based on the Ginzburg-Landau functional together with different extensions of the graph Laplacian to signed networks. We show that blending the information from both positive and negative interactions leads to performance improvement in real signed social networks, consistently outperforming the current state of the art.


  1. 1.
    Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)CrossRefGoogle Scholar
  2. 2.
    Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Advances in Algorithms, Theory, and Applications. CRC Press, Boca Raton (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004). Scholar
  4. 4.
    Bertozzi, A.L., Esedo\(\bar{\text{g}}\)lu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)Google Scholar
  5. 5.
    Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of high dimensional data. Multiscale Model. Simul. 10(3), 1090–1118 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Blowey, J.F., Elliott, C.M.: Curvature dependent phase boundary motion and parabolic double obstacle problems. In: Ni, W.M., Peletier, L.A., Vazquez, J.L. (eds.) Degenerate Diffusions. The IMA Volumes in Mathematics and its Applications, vol. 47, pp. 19–60. Springer, New York (1993). Scholar
  7. 7.
    Bosch, J., Klamt, S., Stoll, M.: Generalizing diffuse interface methods on graphs: nonsmooth potentials and hypergraphs. SIAM J. Appl. Math. 78(3), 1350–1377 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn-Hilliard inpainting. SIAM J. Imaging Sci. 7(1), 67–97 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)zbMATHCrossRefGoogle Scholar
  10. 10.
    Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63(5), 277–293 (1956)CrossRefGoogle Scholar
  11. 11.
    Chapelle, O., Schlkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press, Cambridge (2010)Google Scholar
  12. 12.
    Chiang, K., Whang, J., Dhillon, I.: Scalable clustering of signed networks using balance normalized cut, pp. 615–624. CIKM (2012)Google Scholar
  13. 13.
    Chung, F., Tsiatas, A., Xu, W.: Dirichlet PageRank and ranking algorithms based on trust and distrust. Internet Math. 9(1), 113–134 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cucuringu, M., Davies, P., Glielmo, A., Tyagi, H.: SPONGE: a generalized eigenproblem for clustering signed networks. AISTATS (2019)Google Scholar
  15. 15.
    Cucuringu, M., Pizzoferrato, A., van Gennip, Y.: An MBO scheme for clustering and semi-supervised clustering of signed networks. CoRR abs/1901.03091 (2019)Google Scholar
  16. 16.
    Davis, J.A.: Clustering and structural balance in graphs. Human Relat. 20, 181–187 (1967)CrossRefGoogle Scholar
  17. 17.
    Derr, T., Ma, Y., Tang, J.: Signed graph convolutional networks. In: ICDM (2018)Google Scholar
  18. 18.
    Desai, M., Rao, V.: A characterization of the smallest eigenvalue of a graph. J. Graph Theory 18(2), 181–194 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Doreian, P., Mrvar, A.: Partitioning signed social networks. Soc. Netw. 31(1), 1–11 (2009)zbMATHCrossRefGoogle Scholar
  20. 20.
    Elliott, C.M., Stinner, B.: Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229(18), 6585–6612 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Eyre, D.J.: Unconditionally gradient stable time marching the Cahn-Hilliard equation. In: MRS Proceedings (1998)Google Scholar
  22. 22.
    Falher, G.L., Cesa-Bianchi, N., Gentile, C., Vitale, F.: On the troll-trust model for edge sign prediction in social networks. In: AISTATS (2017)Google Scholar
  23. 23.
    Gallier, J.: Spectral theory of unsigned and signed graphs. Applications to graph clustering: a survey. arXiv preprint arXiv:1601.04692 (2016)
  24. 24.
    Garcia-Cardona, C., Merkurjev, E., Bertozzi, A.L., Flenner, A., Percus, A.G.: Multiclass data segmentation using diffuse interface methods on graphs. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1600–1613 (2014)zbMATHCrossRefGoogle Scholar
  25. 25.
    Garcke, H., Nestler, B., Stinner, B., Wendler, F.: Allen-Cahn systems with volume constraints. Math. Models Methods Appl. Sci. 18(8), 1347–1381 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Garcke, H., Nestler, B., Stoth, B.: A multi phase field concept: numerical simulations of moving phasee boundaries and multiple junctions. SIAM J. Appl. Math. 60, 295–315 (1999)zbMATHCrossRefGoogle Scholar
  27. 27.
    van Gennip, Y., Guillen, N., Osting, B., Bertozzi, A.L.: Mean curvature, threshold dynamics, and phase field theory on finite graphs. Milan J. Math. 82(1), 3–65 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Goldberg, A.B., Zhu, X., Wright, S.: Dissimilarity in graph-based semi-supervised classification. In: AISTATS (2007)Google Scholar
  29. 29.
    Harary, F.: On the notion of balance of a signed graph. Michigan Math. J. 2, 143–146 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Kim, J., Park, H., Lee, J.E., Kang, U.: Side: representation learning in signed directed networks. In: WWW (2018)Google Scholar
  31. 31.
    Kirkley, A., Cantwell, G.T., Newman, M.E.J.: Balance in signed networks. Phys. Rev. E 99, (2019)Google Scholar
  32. 32.
    Kumar, S., Spezzano, F., Subrahmanian, V.: VEWS: a Wikipedia vandal early warning system. In: KDD. ACM (2015)Google Scholar
  33. 33.
    Kumar, S., Spezzano, F., Subrahmanian, V., Faloutsos, C.: Edge weight prediction in weighted signed networks. In: ICDM (2016)Google Scholar
  34. 34.
    Kunegis, J., Schmidt, S., Lommatzsch, A., Lerner, J., Luca, E., Albayrak, S.: Spectral analysis of signed graphs for clustering, prediction and visualization. In: ICDM, pp. 559–570 (2010)Google Scholar
  35. 35.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: WWW, pp. 641–650 (2010)Google Scholar
  36. 36.
    Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection, June 2014.
  37. 37.
    Liu, S.: Multi-way dual cheeger constants and spectral bounds of graphs. Adv. Math. 268, 306–338 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Luo, X., Bertozzi, A.L.: Convergence analysis of the graph Allen-Cahn scheme. Technical report, UCLA (2016)Google Scholar
  39. 39.
    Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Mercado, P., Gautier, A., Tudisco, F., Hein, M.: The power mean Laplacian for multilayer graph clustering. In: AISTATS (2018)Google Scholar
  41. 41.
    Mercado, P., Tudisco, F., Hein, M.: Clustering signed networks with the geometric mean of Laplacians. In: NIPS (2016)Google Scholar
  42. 42.
    Mercado, P., Tudisco, F., Hein, M.: Spectral clustering of signed graphs via matrix power means. In: ICML (2019)Google Scholar
  43. 43.
    Merkurjev, E., Garcia-Cardona, C., Bertozzi, A.L., Flenner, A., Percus, A.G.: Diffuse interface methods for multiclass segmentation of high-dimensional data. Appl. Math. Lett. 33, 29–34 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Nat. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  45. 45.
    Schönlieb, C.B., Bertozzi, A.L.: Unconditionally stable schemes for higher order inpainting. Commun. Math. Sci 9(2), 413–457 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Sedoc, J., Gallier, J., Foster, D., Ungar, L.: Semantic word clusters using signed spectral clustering. In: ACL (2017)Google Scholar
  47. 47.
    Serafino, F., Pio, G., Ceci, M.: Ensemble learning for multi-type classification in heterogeneous networks. In: IEEE TKDE (2018)Google Scholar
  48. 48.
    Shahriari, M., Jalili, M.: Ranking nodes in signed social networks. Soc. Netw. Anal. Min. 4(1), 172 (2014)CrossRefGoogle Scholar
  49. 49.
    Tang, J., Aggarwal, C., Liu, H.: Node classification in signed social networks. In: SDM (2016)Google Scholar
  50. 50.
    Tang, J., Chang, Y., Aggarwal, C., Liu, H.: A survey of signed network mining in social media. ACM Comput. Surv. 49(3), 42:1–42:37 (2016)CrossRefGoogle Scholar
  51. 51.
    Tang, W., Lu, Z., Dhillon, I.S.: Clustering with multiple graphs. In: ICDM (2009)Google Scholar
  52. 52.
    Taylor, J.E., Cahn, J.W.: Linking anisotropic sharp and diffuse surface motion laws via gradient flows. J. Stat. Phys. 77(1–2), 183–197 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Tudisco, F., Mercado, P., Hein, M.: Community detection in networks via nonlinear modularity eigenvectors. SIAM J. Appl. Math. 78(5), 2393–2419 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Wang, S., Tang, J., Aggarwal, C., Chang, Y., Liu, H.: Signed network embedding in social media. In: SDM (2017)Google Scholar
  55. 55.
    Wang, X., Du, Q.: Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56(3), 347–371 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Yuan, S., Wu, X., Xiang, Y.: SNE: signed network embedding. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 183–195. Springer, Cham (2017). Scholar
  57. 57.
    Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local and global consistency. In: NIPS (2003)Google Scholar
  58. 58.
    Zhou, D., Burges, C.J.: Spectral clustering and transductive learning with multiple views. In: ICML (2007)Google Scholar
  59. 59.
    Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised learning using Gaussian fields and harmonic functions. In: ICML (2003)Google Scholar
  60. 60.
    Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–30 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TübingenTübingenGermany
  2. 2.Department of Computer ScienceThe University of British ColumbiaVancouverCanada
  3. 3.Faculty of MathematicsTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations