Advertisement

Quick Fire Set of Questions About CO2 that Need to Be Answered

  • Carlos Alonso-Moreno
  • Santiago García-YusteEmail author
Chapter
  • 10 Downloads
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

The main aim of this chapter is to update the readership on different strategies that have been designed, are in development or have been proposed for reducing CO2 in the atmosphere. This chapter does not follow the structure of the book. The authors expect that a shift in the harmonised style of the book will facilitate reading. With the help of a quick set of fire questions, the harmlessness of the CO2 molecule, removal strategies, capture and sequestration, and its direct transformation into other useful products are discussed in the chapter.

References

  1. C. Alonso-Moreno, S. García-Yuste, Environmental potential of the use of CO2 from alcoholic fermentation processes. The CO2-AFP strategy. Sci. Total Environ. 568, 319–326 (2016).  https://doi.org/10.1016/j.scitotenv.2016.05.220CrossRefGoogle Scholar
  2. T.R. Anderson, E. Hawkins, P.D. Jones, CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and callendar to today’s earth system models. Endeavour 40, 178–187 (2016).  https://doi.org/10.1016/j.endeavour.2016.07.002CrossRefGoogle Scholar
  3. A.M. Appel, J.E. Bercaw, A.B. Bocarsly et al., Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013)CrossRefGoogle Scholar
  4. M. Aresta, A. Dibenedetto, A. Angelini, The changing paradigm in CO2 utilization. J. CO2 Util. 34, 65–73 (2013)Google Scholar
  5. M. Aresta, A. Dibenedetto, E. Quaranta, State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology. J. Catal. 343, 2–45 (2016).  https://doi.org/10.1016/j.jcat.2016.04.003CrossRefGoogle Scholar
  6. K. Armstrong, P. Styring, Assessing the potential of utilization and storage strategies for post-combustion CO2 emissions reduction. Front. Energy Res. 3 (2015).  https://doi.org/10.3389/fenrg.2015.00008
  7. J. Barrett, Greenhouse molecules, their spectra and function in the atmosphere. Energy Environ. 16, 1037–1045 (2005).  https://doi.org/10.1260/095830505775221542CrossRefGoogle Scholar
  8. L. Bernstein, P. Bosch, O. Canziani et al., Climate change 2007 : Summary for policymakers. Hemisphere 12–17 (2007)Google Scholar
  9. M. Bui, C.S. Adjiman, A. Bardow et al., Carbon capture and storage (CCS): The way forward. Energy Environ. Sci. 11, 1062–1176 (2018)CrossRefGoogle Scholar
  10. M. Caplow, Kinetics of Carbamate Formation and Breakdown. J. Am. Chem. Soc. 90, 6795–6803 (1968).  https://doi.org/10.1021/ja01026a041CrossRefGoogle Scholar
  11. P.C. Chiang, S.Y. Pan, Carbon dioxide mineralization and utilization. (2017)CrossRefGoogle Scholar
  12. Climeworks, About| Climeworks—Capturing CO2 From Air. (2018). http://www.climeworks.com/about/. Accessed 25 Nov 2019
  13. R.M. Cuéllar-Franca, A. Azapagic, Carbon capture, storage and utilisation technologies: A critical analysis and comparison of their life cycle environmental impacts. J. CO2 Util. 9, 82–102 (2015)CrossRefGoogle Scholar
  14. P.V. Danckwerts, The reaction of CO2 with ethanolamines. Chem. Eng. Sci. 34, 443–446 (1979).  https://doi.org/10.1016/0009-2509(79)85087-3CrossRefGoogle Scholar
  15. D.J. Darensbourg, Chemistry of carbon dioxide relevant to its utilization: A personal perspective. Inorg. Chem. 49, 10765–10780 (2010).  https://doi.org/10.1021/ic101800dCrossRefGoogle Scholar
  16. D.A. Dowling, Greenhouse gas removal. (2018)Google Scholar
  17. C. Engineering, About Us—Carbon Engineering. http://carbonengineering.com/about-us/. Accessed 25 Nov 2019
  18. M. Fasihi, O. Efimova, C. Breyer, Techno-economic assessment of CO2 direct air capture plants. J. Clean. Prod. 224, 957–980 (2019).  https://doi.org/10.1016/j.jclepro.2019.03.086CrossRefGoogle Scholar
  19. E. Gal, US20080072762A1—Ultra Cleaning of Combustion Gas Including the Removal of CO2—Google Patents. (2006). https://patents.google.com/patent/US20080072762A1/en. Accessed 25 Nov 2019
  20. Global Thermostat, About Global Thermostat—Global Thermostat. (2019). https://globalthermostat.com/about-global-thermostat/. Accessed 25 Nov 2019
  21. A. Goeppert, M. Czaun, G.K. Surya Prakash, G.A. Olah, Air as the renewable carbon source of the future: An overview of CO2 capture from the atmosphere. Energy Environ. Sci. 5, 7833–7853 (2012)CrossRefGoogle Scholar
  22. D. Gonzalez-Garza, R. Rivera-Tinoco, C. Bouallou, Comparison of ammonia, monoethanolamine, diethanolamine and methyldiethanolamine solvents to reduce CO2 greenhouse gas emissions. Chem. Eng. Trans. 279–284 (2009)Google Scholar
  23. R.S. Haszeldine, S. Flude, G. Johnson, V. Scott, Negative emissions technologies and carbon capture and storage to achieve the Paris agreement commitments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20160447 (2018).  https://doi.org/10.1098/rsta.2016.0447CrossRefGoogle Scholar
  24. C. Heinze, S. Meyer, N. Goris et al., The ocean carbon sink—impacts, vulnerabilities and challenges. Earth Syst. Dyn. 6, 327–358 (2015)CrossRefGoogle Scholar
  25. H.J. Herzog, Scaling up carbon dioxide capture and storage: From megatons to gigatons. Energy Econ. 33, 597–604 (2011).  https://doi.org/10.1016/j.eneco.2010.11.004CrossRefGoogle Scholar
  26. R.A. Houghton, A.A. Nassikas, Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochem. Cycles 31, 456–472 (2017).  https://doi.org/10.1002/2016GB005546CrossRefGoogle Scholar
  27. Hydrocell, Direct Air Capture (DAC) Appliances—Hydrocell Oy. (2019). https://hydrocell.fi/en/air-cleaners-carbon-dioxide-filters-and-dac-appliances/dac-appliances/. Accessed 25 Nov 2019
  28. Infinitree, Technology—Infinitree LLC. (2018). http://www.infinitreellc.com/technology/. Accessed 25 Nov 2019
  29. C.R. Jones, D. Kaklamanou, W.M. Stuttard et al., Investigating public perceptions of carbon dioxide utilisation (CDU) technology: A mixed methods study. Faraday Discuss. 183, 327–347 (2015).  https://doi.org/10.1039/c5fd00063gCrossRefGoogle Scholar
  30. D.W. Keith, G. Holmes, D. St. Angelo, K. Heidel, A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).  https://doi.org/10.1016/j.joule.2018.05.006CrossRefGoogle Scholar
  31. P.A. Kharecha, J.E. Hansen, Implications of ‘peak oil’ for atmospheric CO2 and climate. Global Biogeochem. Cycles 22 (2008).  https://doi.org/10.1029/2007GB003142CrossRefGoogle Scholar
  32. J.R. Knapp, G.L. Laur, P.A. Vadas et al., Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 97, 3231–3261 (2014)CrossRefGoogle Scholar
  33. B. Li, Y. Duan, D. Luebke, B. Morreale, Advances in CO2 capture technology: A patent review. Appl. Energy 102, 1439–1447 (2013)CrossRefGoogle Scholar
  34. X. Li, E. Hagaman, C. Tsouris, J.W. Lee, Removal of carbon dioxide from flue gas by ammonia carbonation in the gas phase. Energy Fuels 17, 69–74 (2003).  https://doi.org/10.1021/ef020120nCrossRefGoogle Scholar
  35. G. Lombardo, R. Agarwal, J. Askander, Chilled ammonia process at technology center Mongstad-first results. Energy Procedia 31–39 (2014)CrossRefGoogle Scholar
  36. M. Mahmoudkhani, D.W. Keith, Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air-Thermodynamic analysis. Int. J. Greenh. Gas Control 3, 376–384 (2009).  https://doi.org/10.1016/j.ijggc.2009.02.003CrossRefGoogle Scholar
  37. H. Mao, H. Zhang, Q. Fu et al., Effects of four additives in pig manure composting on greenhouse gas emission reduction and bacterial community change. Bioresour. Technol. 292, 121896 (2019).  https://doi.org/10.1016/J.BIORTECH.2019.121896CrossRefGoogle Scholar
  38. F. Milella, M. Gazzani, D. Sutter, M. Mazzotti, Process synthesis, modeling and optimization of continuous cooling crystallization with heat integration—application to the chilled ammonia CO2 Capture Process. Ind. Eng. Chem. Res. 57, 11712–11727 (2018).  https://doi.org/10.1021/acs.iecr.8b01993CrossRefGoogle Scholar
  39. J.C. Minx, W.F. Lamb, M.W. Callaghan et al., Negative emissions—Part 1: Research landscape and synthesis. Environ. Res. Lett. 13, 63001 (2018).  https://doi.org/10.1088/1748-9326/aabf9bCrossRefGoogle Scholar
  40. M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies: A review. Energy 46, 431–441 (2012).  https://doi.org/10.1016/j.energy.2012.08.006CrossRefGoogle Scholar
  41. J. Morelli, Environmental sustainability: A definition for environmental professionals. J. Environ. Sustain. 1, 1–10 (2011).  https://doi.org/10.14448/jes.01.0002CrossRefGoogle Scholar
  42. NASA, The Carbon Cycle. (2019). https://earthobservatory.nasa.gov/features/CarbonCycle. Accessed 25 Nov 2019
  43. R.S. Norhasyima, T.M.I. Mahlia, Advances in CO2 utilization technology: A patent landscape review. J. CO2 Util. 26, 323–335 (2018).  https://doi.org/10.1016/j.jcou.2018.05.022CrossRefGoogle Scholar
  44. A.A. Olajire, CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry. Front. Chem. Sci. Eng. 7, 366–380 (2013)CrossRefGoogle Scholar
  45. A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications—A review. Energy 35, 2610–2628 (2010).  https://doi.org/10.1016/j.energy.2010.02.030CrossRefGoogle Scholar
  46. I. Omae, Recent developments in carbon dioxide utilization for the production of organic chemicals. Coord. Chem. Rev. 256, 1384–1405 (2012)CrossRefGoogle Scholar
  47. T.V.T. Phan, C. Gallardo, J. Mane, GREEN MOTION: A new and easy to use green chemistry metric from laboratories to industry. Green Chem. 17, 2846–2852 (2015).  https://doi.org/10.1039/c4gc02169jCrossRefGoogle Scholar
  48. C. Quéré, R. Andrew, P. Friedlingstein et al., Global carbon budget 2018. Earth Syst Sci Data 10, 2141–2194 (2018).  https://doi.org/10.5194/essd-10-2141-2018CrossRefGoogle Scholar
  49. A. Rafiee, K. Rajab Khalilpour, D. Milani, M. Panahi, Trends in CO2 conversion and utilization: A review from process systems perspective. J. Environ. Chem. Eng. 6, 5771–5794 (2018)CrossRefGoogle Scholar
  50. N. Ramachandran, A. Aboudheir, R. Idem, P. Tontiwachwuthikul, Kinetics of the absorption of CO2 into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine. Ind. Eng. Chem. Res. 2608–2616 (2006)CrossRefGoogle Scholar
  51. C. Recycling, CRI—Carbon Recycling International. (2018). https://www.carbonrecycling.is/. Accessed 25 Nov 2019
  52. Skytree (2019) Direct Air Capture - Skytree. https://www.skytree.eu/direct-air-capture/. Accessed 25 Nov 2019
  53. P. Smith, S.J. Davis, F. Creutzig et al., Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 6, 42–50 (2016)CrossRefGoogle Scholar
  54. B.P. Spigarelli, S.K. Kawatra, Opportunities and challenges in carbon dioxide capture. J. CO2 Util. 1, 69–87 (2013)CrossRefGoogle Scholar
  55. D. Sutter, M. Mazzotti, Solubility and growth kinetics of ammonium bicarbonate in aqueous solution. Cryst. Growth Des. 17, 3048–3054 (2017).  https://doi.org/10.1021/acs.cgd.6b01751CrossRefGoogle Scholar
  56. UN, World Population Prospects—Population Division—United Nations. (2019). https://population.un.org/wpp/. Accessed 25 Nov 2019
  57. UNFCC, Paris Agreement—Status of Ratification. (UNFCCC, 2019). https://unfccc.int/process/the-paris-agreement/status-of-ratification. Accessed 25 Nov 2019
  58. G.F. Versteeg, L.A.J. Van Dijck, W.P.M. Van Swaaij, On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions. An overview. Chem. Eng. Commun. 144, 133–158 (1996)CrossRefGoogle Scholar
  59. T. Wautelet, The concept of circular economy—its origins and its evolution (2018).  https://doi.org/10.13140/RG.2.2.17021.87523
  60. X. Yang, R.J. Rees, W. Conway et al., Computational modeling and simulation of CO2 capture by aqueous amines. Chem. Rev. 117, 9524–9593 (2017)CrossRefGoogle Scholar
  61. A. Zimmermann, M. Kant, CO2 utilisation today. (2017)Google Scholar
  62. K. Zitelman, J. Ekmann, J. Huston, P. Indrakanti, Carbon capture, utilization, and storage: Technology and policy status and opportunities national association of regulatory utility commissioners. (2018)Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de FarmaciaUniversidad de Castilla-La Mancha, Paseo de los EstudiantesAlbaceteSpain
  2. 2.Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Ciencias y Tecnologías QuímicasUniversidad de Castilla-La Mancha, Campus UniversitarioCiudad RealSpain

Personalised recommendations