Dynamic Contrast-Enhanced Imaging

  • Aritrick Chatterjee
  • Federico Pineda
  • Gregory S. Karczmar
  • Aytekin OtoEmail author


DCE-MRI involves the acquisition of serial T1-weighted images of the prostate before and after the bolus injection of a gadolinium-based contrast agent. Prostate cancers (PCa) show early enhancement due to increased vascularity or angiogenesis. Increased capillary permeability leads to higher uptake of contrast agent that shortens T1 relaxation time, and therefore cancers show up as hyperintense relative to surrounding tissue. PI-RADS v2 recommends imaging with an in-plane resolution ≤2 × 2 mm with 3 mm slice thickness without any gaps between slices that match diffusion-weighted images. The use of temporal resolution of <15 s (<7 s preferred) without any gaps in acquisition for over 2 min is recommended. In addition to qualitative analysis, semiquantitative (curve type, EMM) and quantitative analysis (Tofts pharmacokinetic model) can be used for PCa diagnosis. Prostate cancers are characterized by increased contrast media transfer coefficient (Ktrans) and typically a type 3 signal curve with increased wash-in and washout rate compared to benign tissue. Currently, DCE is still an essential component of the mpMRI prostate examination; however, its role in determination of PI-RADS v2.1 assessment category is secondary to T2W and DWI.


Prostate cancer DCE-MRI Contrast agent Tofts model Multiparametric MRI PI-RADS Gadolinium Signal enhancement Signal washout 



Dr Aritrick Chatterjee, Dr Federico Pineda and Dr Gregory Karczmar have no disclosures.

Dr Aytekin Oto has the following disclosures. Research Grant, Koninklijke Philips NV Research Grant, Guerbet SA Research Grant, Profound Medical Inc. Medical Advisory Board, Profound Medical Inc Speaker, Bracco Group.


  1. 1.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.CrossRefGoogle Scholar
  2. 2.
    Moldovan PC, Van den Broeck T, Sylvester R, Marconi L, Bellmunt J, van den Bergh RCN, et al. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate Cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology prostate Cancer guidelines panel. Eur Urol. 2017;72(2):250–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Baur AD, Maxeiner A, Franiel T, Kilic E, Huppertz A, Schwenke C, et al. Evaluation of the prostate imaging reporting and data system for the detection of prostate cancer by the results of targeted biopsy of the prostate. Investig Radiol. 2014;49(6):411–20.CrossRefGoogle Scholar
  4. 4.
    Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur Urol. 2016;69(1):16–40.CrossRefGoogle Scholar
  5. 5.
    Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Fan X, Medved M, River JN, Zamora M, Corot C, Robert P, et al. New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magn Reson Med. 2004;51(3):487–94.PubMedCrossRefGoogle Scholar
  7. 7.
    Kayhan A, Fan X, Oto A. Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer. Top Magn Reson Imaging. 2009;20(2):105–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Franiel T, Hamm B, Hricak H. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol. 2011;21(3):616–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Othman AE, Falkner F, Weiss J, Kruck S, Grimm R, Martirosian P, et al. Effect of temporal resolution on diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging of the prostate. Investig Radiol. 2016;51(5):290–6.CrossRefGoogle Scholar
  10. 10.
    de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol. 2014;202(2):343–51.CrossRefGoogle Scholar
  11. 11.
    Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—correlation with biopsy and histopathology. J Magn Reson Imaging. 2006;24(1):108–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Hagberg GE, Scheffler K. Effect of r1 and r2 relaxivity of gadolinium-based contrast agents on the T1-weighted MR signal at increasing magnetic field strengths. Contrast Media Mol Imaging. 2013;8(6):456–65.PubMedCrossRefGoogle Scholar
  13. 13.
    Chatterjee A, He D, Fan X, Wang S, Szasz T, Yousuf A, et al. Performance of ultrafast DCE-MRI for diagnosis of prostate cancer. Acad Radiol. 2018;25(3):349–58.PubMedCrossRefGoogle Scholar
  14. 14.
    Gawlitza J, Reiss-Zimmermann M, Thörmer G, Schaudinn A, Linder N, Garnov N, et al. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate. Sci Rep. 2017;7:40640.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Heijmink SWTPJ, Fütterer JJ, Hambrock T, Takahashi S, Scheenen TWJ, Huisman HJ, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T—comparison of image quality, localization, and staging performance. Radiology. 2007;244(1):184–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Turkbey B, Merino MJ, Gallardo EC, Shah V, Aras O, Bernardo M, et al. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging. 2014;39(6):1443–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Chatterjee A, Devaraj A, Matthew M, Szasz T, Antic T, Karczmar G, et al. Performance of T2 maps in the detection of prostate cancer. Acad Radiol. 2019;26(1):15–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and Globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41.PubMedCrossRefGoogle Scholar
  19. 19.
    McDonald JS, Hunt CH, Kolbe AB, Schmitz JJ, Hartman RP, Maddox DE, et al. Acute adverse events following Gadolinium-based contrast agent administration: a single-center retrospective study of 281 945 injections. Radiology. 2019;292(3):620–7.Google Scholar
  20. 20.
    Port RE, Knopp MV, Hoffmann U, Milker-Zabel S, Brix G. Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging. 1999;10(3):233–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951;3(1):1–41.PubMedGoogle Scholar
  22. 22.
    Yang C, Karczmar GS, Medved M, Stadler WM. Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med. 2007;58(6):1266–75.PubMedCrossRefGoogle Scholar
  23. 23.
    Lavini C, Verhoeff JJC. Reproducibility of the gadolinium concentration measurements and of the fitting parameters of the vascular input function in the superior sagittal sinus in a patient population. Magn Reson Imaging. 2010;28(10):1420–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Fan X, Haney CR, Mustafi D, Yang C, Zamora M, Markiewicz EJ, et al. Use of a reference tissue and blood vessel to measure the arterial input function in DCEMRI. Magn Reson Med. 2010;64(6):1821–6.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS, et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol. 2007;189(4):W192–201.CrossRefGoogle Scholar
  26. 26.
    Tamada T, Sone T, Jo Y, Yamamoto A, Yamashita T, Egashira N, et al. Prostate cancer: relationships between Postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology. 2008;248(2):531–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176(6):2432–7.PubMedCrossRefGoogle Scholar
  28. 28.
    Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology. 2010;255(1):89–99.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Rosenkrantz AB, Sabach A, Babb JS, Matza BW, Taneja SS, Deng F-M. Prostate cancer: comparison of dynamic contrast-enhanced MRI techniques for localization of peripheral zone tumor. Am J Roentgenol. 2013;201(3):W471–W8.CrossRefGoogle Scholar
  30. 30.
    Turkbey B, McKinney YL, Trivedi H, Chua C, Bratslavsky G, Shih JH, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol. 2011;186(5):1818–24.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tan CH, Paul Hobbs B, Wei W, Kundra V. Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis. Am J Roentgenol. 2015;204(4):W439–W48.CrossRefGoogle Scholar
  32. 32.
    Isebaert S, Van den Bergh L, Haustermans K, Joniau S, Lerut E, De Wever L, et al. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging. 2013;37(6):1392–401.PubMedCrossRefGoogle Scholar
  33. 33.
    Kim JK, Hong SS, Choi YJ, Park SH, Ahn H, Kim C-S, et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging. 2005;22(5):639–46.PubMedCrossRefGoogle Scholar
  34. 34.
    Isebaert S, De Keyzer F, Haustermans K, Lerut E, Roskams T, Roebben I, et al. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol. 2012;81(3):e217–e22.PubMedCrossRefGoogle Scholar
  35. 35.
    Ren J, Huan Y, Wang H, Chang YJ, Zhao HT, Ge YL, et al. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol. 2008;63(2):153–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Hansford BG, Peng Y, Jiang Y, Vannier MW, Antic T, Thomas S, et al. Dynamic contrast-enhanced MR imaging curve-type analysis: is it helpful in the differentiation of prostate cancer from healthy peripheral zone? Radiology. 2015;275(2):448–57.PubMedCrossRefGoogle Scholar
  37. 37.
    Tamada T, Sone T, Higashi H, Jo Y, Yamamoto A, Kanki A, et al. Prostate cancer detection in patients with Total serum prostate-specific antigen levels of 4–10 ng/mL: diagnostic efficacy of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging. Am J Roentgenol. 2011;197(3):664–70.CrossRefGoogle Scholar
  38. 38.
    Bloch BN, Furman-Haran E, Helbich TH, Lenkinski RE, Degani H, Kratzik C, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging—initial results. Radiology. 2007;245(1):176–85.PubMedCrossRefGoogle Scholar
  39. 39.
    Padhani AR, Gapinski CJ, Macvicar DA, Parker GJ, Suckling J, Revell PB, et al. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol. 2000;55(2):99–109.PubMedCrossRefGoogle Scholar
  40. 40.
    Schlemmer H-P, Merkle J, Grobholz R, Jaeger T, Michel MS, Werner A, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol. 2004;14(2):309–17.PubMedCrossRefGoogle Scholar
  41. 41.
    Franiel T, Lüdemann L, Taupitz M, Rost J, Asbach P, Beyersdorff D. Pharmacokinetic MRI of the prostate: parameters for differentiating low-grade and high-grade prostate cancer. Rofo. 2009;181(6):536–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Chen Y-J, Chu W-C, Pu Y-S, Chueh S-C, Shun C-T, Tseng W-YI. Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging. 2012;36(4):912–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Vos EK, Litjens GJS, Kobus T, Hambrock T, Kaa CAH-VD, Barentsz JO, et al. Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 T. Eur Urol. 2013;64(3):448–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Hötker AM, Mazaheri Y, Aras Ö, Zheng J, Moskowitz CS, Gondo T, et al. Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI. AJR Am J Roentgenol. 2016;206(4):756–63.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Low RN, Fuller DB, Muradyan N. Dynamic gadolinium-enhanced perfusion MRI of prostate cancer: assessment of response to hypofractionated robotic stereotactic body radiation therapy. Am J Roentgenol. 2011;197(4):907–15.CrossRefGoogle Scholar
  46. 46.
    Oto A, Yang C, Kayhan A, Tretiakova M, Antic T, Schmid-Tannwald C, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. Am J Roentgenol. 2011;197(6):1382–90.CrossRefGoogle Scholar
  47. 47.
    Chatterjee A, Gallan AJ, He D, Fan X, Mustafi D, Yousuf A, et al. Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol. 2019;44(6):2233–43.CrossRefGoogle Scholar
  48. 48.
    Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76(3):340–51.CrossRefGoogle Scholar
  49. 49.
    Robert P, Frenzel T, Factor C, Jost G, Rasschaert M, Schuetz G, et al. Methodological aspects for preclinical evaluation of gadolinium presence in brain tissue: critical appraisal and suggestions for harmonization—a joint initiative. Investig Radiol. 2018;53(9):499–517.CrossRefGoogle Scholar
  50. 50.
    He D, Chatterjee A, Fan X, Wang S, Eggener S, Yousuf A, et al. Feasibility of dynamic contrast-enhanced magnetic resonance imaging using low-dose gadolinium: comparative performance with standard dose in prostate cancer diagnosis. Investig Radiol. 2018;53(10):609–15.CrossRefGoogle Scholar
  51. 51.
    Huang B, Liang CH, Liu HJ, Wang GY, Zhang SX. Low-dose contrast-enhanced magnetic resonance imaging of brain metastases at 3.0 T using high-relaxivity contrast agents. Acta Radiol. 2010;51(1):78–84.PubMedCrossRefGoogle Scholar
  52. 52.
    Boehm-Sturm P, Haeckel A, Hauptmann R, Mueller S, Kuhl CK, Schellenberger EA. Low-molecular-weight Iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced MR imaging. Radiology. 2018;286(2):537–46.Google Scholar
  53. 53.
    Mustafi D, Ward J, Dougherty U, Bissonnette M, Hart J, Vogt S, et al. X-ray fluorescence microscopy demonstrates preferential accumulation of a vanadium-based magnetic resonance imaging contrast agent in murine colonic tumors. Mol Imaging. 2015;14:14.CrossRefGoogle Scholar
  54. 54.
    Boesen L, Norgaard N, Logager V, Balslev I, Bisbjerg R, Thestrup KC, et al. Assessment of the diagnostic accuracy of Biparametric magnetic resonance imaging for prostate Cancer in biopsy-naive men: the Biparametric MRI for detection of prostate Cancer (BIDOC) study. JAMA Netw Open. 2018;1(2):e180219.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jambor I, Bostrom PJ, Taimen P, Syvanen K, Kahkonen E, Kallajoki M, et al. Novel biparametric MRI and targeted biopsy improves risk stratification in men with a clinical suspicion of prostate cancer (IMPROD trial). J Magn Reson Imaging. 2017;46(4):1089–95.PubMedCrossRefGoogle Scholar
  56. 56.
    Krishna S, McInnes M, Lim C, Lim R, Hakim SW, Flood TA, et al. Comparison of prostate imaging reporting and data system versions 1 and 2 for the detection of peripheral zone Gleason score 3 + 4 = 7 cancers. AJR Am J Roentgenol. 2017;209(6):W365–W73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Aritrick Chatterjee
    • 1
    • 2
  • Federico Pineda
    • 1
  • Gregory S. Karczmar
    • 1
    • 2
  • Aytekin Oto
    • 1
    • 2
    Email author
  1. 1.University of Chicago, Department of RadiologyChicagoUSA
  2. 2.University of Chicago, Sanford J. Grossman Center of Excellence in Prostate Imaging and Image Guided TherapyChicagoUSA

Personalised recommendations