Advertisement

Bacteriophages for Environmental Applications: Effect of Trans-organismic Communication on Wastewater Treatments

  • Soumya ChatterjeeEmail author
  • Sonika Sharma
Chapter
  • 48 Downloads

Abstract

The emergence of different pathogenic bacteria especially (multi) drug resistant one, is a concern worldwide. Bacteriophage (commonly known as ‘phage’) based restoration of bacteria contaminated environments has a huge potential. However, phages intricately communicate, both intra- and intercellular levels, for their survival and take decisions for lytic or lysogenised phase of life. This review encompasses recent scientific understanding on bacteriophage communications, infection, and behavioural pattern amongst phages and hosts, and their potential environmental applications.

Keywords

Pathogenic bacteria Arbitrium CRISPR-CAS Biofilm Lysogeny Phage infection 

Notes

Acknowledgments

Authors wish to acknowledge to all phage researchers of the world who are trying to contribute towards this immense important tiniest entity. Authors also wish to acknowledge Director, DRL Tezpur for support.

References

  1. Ackermann HW (2011) The first phage electron micrographs. Bacteriophage 1(4):225–227PubMedPubMedCentralGoogle Scholar
  2. Adnan M, Ali Shah MR, Jamal M, Jalil F, Andleeb S, Nawaz MA, Pervez S, Hussain T, Shah I, Imran M, Kamil A (2019) Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm. Biologicals 63:89–96. pii: S1045-1056(19)30109-5.  https://doi.org/10.1016/j.biologicals.2019.10.003CrossRefPubMedGoogle Scholar
  3. Aguilera ER, Erickson AK, Jesudhasan PR, Robinson CM, Pfeiffer JK (2017) Plaques formed by mutagenized viral populations have elevated Coinfection frequencies. MBio 8(2). pii: e02020-16.  https://doi.org/10.1128/mBio.02020-16
  4. Aiewsakun P, Adriaenssens EM, Lavigne R, Kropinski AM, Simmonds P (2018) Evaluation of the genomic diversity of viruses infecting bacteria, archaea and eukaryotes using a common bioinformatic platform: steps towards a unified taxonomy. J Gen Virol 99:1331–1343PubMedPubMedCentralGoogle Scholar
  5. Altuvia S, Storz G, Papenfort K (2018) Cross-regulation between Bacteria and phages at a posttranscriptional level. Microbiol Spectr 6(4).  https://doi.org/10.1128/microbiolspec.RWR-0027-2018
  6. Borges AL, Zhang JY, Rollins MF, Osuna BA, Wiedenheft B, Bondy-Denomy J (2018) Bacteriophage cooperation suppresses CRISPR-Cas3 and Cas9 immunity. Cell 174(4):917–925.e10.  https://doi.org/10.1016/j.cell.2018.06.013CrossRefPubMedPubMedCentralGoogle Scholar
  7. Boudaud N, Machinal C, David F, Fréval-Le Bourdonnec A, Jossent J, Bakanga F, Arnal C, Jaffrezic MP, Oberti S, Gantzer C (2012) Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale. Water Res 46:2651–2664PubMedGoogle Scholar
  8. Campbell A (1994) Comparative molecular biology of lambdoid phages. Annu Rev Microbiol 48:193–222.  https://doi.org/10.1146/annurev.mi.48.100194.001205CrossRefPubMedGoogle Scholar
  9. Chen L, Fan J, Yan T, Liu Q, Yuan S, Zhang H, Yang J, Deng D, Huang S, Ma Y (2019) Isolation and characterization of specific phages to prepare a cocktail preventing Vibrio sp. Va-F3 infections in Shrimp (Litopenaeus vannamei). Front Microbiol 10:2337.  https://doi.org/10.3389/fmicb.2019.02337CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chevallereau A, Meaden S, Fradet O, Landsberger M, Maestri A, Biswas A, Gandon S, van Houte S, Westra ER (2019) Exploitation of the cooperative behaviours of anti-CRISPR phages. bioRxiv.  https://doi.org/10.1101/574418
  11. Chowdhury S, Carter J, Rollins MF, Golden SM, Jackson RN, Hoffmann C, Nosaka L, Bondy-Denomy J, Maxwell KL, Davidson AR, Fischer ER, Lander GC, Wiedenheft B (2017) Structure reveals mechanisms of viral suppressors that intercept a CRISPR RNA-guided surveillance complex. Cell 169:47–57PubMedPubMedCentralGoogle Scholar
  12. Couch M, Agga GE, Kasumba J, Parekh RR, Loughrin JH, Conte ED (2019) Abundances of tetracycline resistance genes and tetracycline antibiotics during anaerobic digestion of swine waste. J Environ Qual 48:171–178PubMedGoogle Scholar
  13. Culot A, Grosset N, Gautier M (2019) Overcoming the challenges of phage therapy for industrial aquaculture: a review. Aquaculture 513:734423.  https://doi.org/10.1016/j.aquaculture.2019.734423ff.ffhal-02291468fCrossRefGoogle Scholar
  14. Czajkowski R, Jackson RW, Lindow SE (2019) Editorial: environmental bacteriophages: from biological control applications to directed bacterial evolution. Front Microbiol 10:1830.  https://doi.org/10.3389/fmicb.2019.01830CrossRefPubMedPubMedCentralGoogle Scholar
  15. D’Herelle F (1917a) Sur un microbe invisible antagoniste des bacillesdysente ´riques. C R Acad Sci (Paris) 165:373–375Google Scholar
  16. d’Herelle F (1917b) On an invisible microbe antagonistic to dysentery bacilli. C R Acad Sci 165:373–375Google Scholar
  17. d’Herelle F (1930) The bacteriophage and its clinical applications. Charles C Thomas, SpringfieldGoogle Scholar
  18. d’Herelle F (1949) The bacteriophage. Sci News 14:44–59Google Scholar
  19. Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289PubMedGoogle Scholar
  20. Dedrick RM, Jacobs-Sera D, Bustamante CA, Garlena RA, Mavrich TN, Pope WH, Reyes JC, Russell DA, Adair T, Alvey R, Bonilla JA, Bricker JS, Brown BR, Byrnes D, Cresawn SG, Davis WB, Dickson LA, Edgington NP, Findley AM, Golebiewska U, Grose JH, Hayes CF, Hughes LE, Hutchison KW, Isern S, Johnson AA, Kenna MA, Klyczek KK, Mageeney CM, Michael SF, Molloy SD, Montgomery MT, Neitzel J, Page ST, Pizzorno MC, Poxleitner MK, Rinehart CA, Robinson CJ, Rubin MR, Teyim JN, Vazquez E, Ware VC, Washington J, Hatfull GF (2017) Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol 2:16251.  https://doi.org/10.1038/nmicrobiol.2016.251CrossRefPubMedPubMedCentralGoogle Scholar
  21. Diaz H, Graham K, Moreland R, Liu M, Ramsey J (2019) Complete genome sequence of Escherichia coli phage Pisces. Microbiol Resour Announc 8(39). pii: e01054-19.  https://doi.org/10.1128/MRA.01054-19
  22. Díaz-Muñoz SL, Sanjuán R, West S (2017) Sociovirology: conflict, cooperation, and communication among viruses. Cell Host Microbe 22(4):437–441.  https://doi.org/10.1016/j.chom.2017.09.012CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dolgin E (2019) The secret social lives of viruses. Nature 570:290–292PubMedGoogle Scholar
  24. Domingo-Calap P, Segredo-Otero E, Durán-Moreno M, Sanjuán R (2019) Social evolution of innate immunity evasion in a virus. Nat Microbiol 4(6):1006–1013.  https://doi.org/10.1038/s41564-019-0379-8CrossRefPubMedPubMedCentralGoogle Scholar
  25. Doron S, Melamed S, Ofir G, Leavitt A, Lopatina A, Keren M, Amitai G, Sorek R (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359(6379). pii: eaar4120.  https://doi.org/10.1126/science.aar4120
  26. Dou C, Xiong J, Gu Y, Yin K, Wang J, Hu Y, Zhou D, Fu X, Qi S, Zhu X, Yao S, Xu H, Nie C, Liang Z, Yang S, Wei Y, Cheng W (2018) Structural and functional insights into the regulation of the lysis-lysogeny decision in viral communities. Nat Microbiol 3(11):1285–1294.  https://doi.org/10.1038/s41564-018-0259-7CrossRefGoogle Scholar
  27. Dunny GM, Berntsson RP-A (2016) Enterococcal sex pheromones: evolutionary pathways to complex, two-signal systems. J Bacteriol 198:1556–1562PubMedPubMedCentralGoogle Scholar
  28. Engelberg-Kulka H, Kumar S (2015) Yet another way that phage λ manipulates its Escherichia coli host: λrexB is involved in the lysogenic-lytic switch. Mol Microbiol 96(4):689–693.  https://doi.org/10.1111/mmi.12969CrossRefPubMedGoogle Scholar
  29. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R (2017) Communication between viruses guides lysis-lysogeny decisions. Nature 541(7638):488–493.  https://doi.org/10.1038/nature21049CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gallego Del Sol F, Penadés JR, Marina A (2019) Deciphering the molecular mechanism underpinning phage Arbitrium communication systems. Mol Cell 74(1):59–72.  https://doi.org/10.1016/j.molcel.2019.01.025CrossRefPubMedPubMedCentralGoogle Scholar
  31. Garneau JR, Depardieu F, Fortier L-C, Bikard D, Monot M (2017) PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep 7:8292.  https://doi.org/10.1038/s41598-017-07910-5CrossRefPubMedPubMedCentralGoogle Scholar
  32. Garner E, Inyang M, Garvey E, Parks J, Glover C, Grimaldi A, Dickenson E, Sutherland J, Salveson A, Edwards MA, Pruden A (2019) Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res 151:75-86Google Scholar
  33. Gentile GM, Wetzel KS, Dedrick RM, Montgomery MT, Garlena RA, Jacobs-Sera D, Hatfull GF (2019) More evidence of collusion: a new prophage-mediated viral defense system encoded by mycobacteriophage Sbash. mBio 10:e00196-19.  https://doi.org/10.1128/mBio.00196-19
  34. Goyal SM, Gerba CP, Bitton G (1987) Phage ecology. Wiley, New York, p. 321Google Scholar
  35. Grabow WOK (2001) Bacteriophages: update on application as models for viruses in water. Water SA 27:251–268Google Scholar
  36. Greenberg EP (2003) Bacterial communication: tiny teamwork. Nature 424:134PubMedGoogle Scholar
  37. Guan Z, Pei K, Wang J, Cui Y, Zhu X, Su X, Zhou Y, Zhang D, Tang C, Yin P, Liu Z, Zou T (2019) Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage. Cell Discov 28(5):29.  https://doi.org/10.1038/s41421-019-0101-2CrossRefGoogle Scholar
  38. Gunathilaka GU, Tahlan V, Mafiz AI, Polur M, Zhang Y (2017) Phages in urban wastewater have the potential to disseminate antibiotic resistance. Int J Antimicrob Agents 50(5):678–683.  https://doi.org/10.1016/j.ijantimicag.2017.08.013CrossRefPubMedGoogle Scholar
  39. Guo TW, Bartesaghi A, Yang H, Falconieri V, Rao P, Merk A, Eng ET, Raczkowski AM, Fox T, Earl LA, Patel DJ, Subramaniam S (2017) Cryo-EM structures reveal mechanism and inhibition of DNA targeting by a CRISPR-Cas surveillance complex. Cell 171:414–426PubMedPubMedCentralGoogle Scholar
  40. Hadley P (1928) The Twort-D’Herelle phenomenon: a critical review and presentation of a new conception (homogamic theory) of bacteriophage action. J Infect Dis 42:263-434Google Scholar
  41. Hankin EHL (1896) Action bactericide des Eaux de la Jumna et duGange sur le vibrion du cholera. Ann Inst Pasteur 10:511Google Scholar
  42. Harada LK, Silva EC, Campos WF, Del Fiol FS, Vila M, Dąbrowska K, Krylov VN, Balcão VM (2018) Biotechnological applications of bacteriophages: state of the art. Microbiol Res 212–213:38–58PubMedGoogle Scholar
  43. Haramoto E, Fujino S, Otagiri M (2015) Distinct behaviors of infectious F-specific RNA coliphage genogroups at a wastewater treatment plant. Sci Total Environ 520:32–38PubMedGoogle Scholar
  44. Hargreaves KR, Kropinski AM, Clokie MRJ (2014) Bacteriophage behavioral ecology: how phages alter their bacterial host’s habits. Bacteriophage 4:e29866.  https://doi.org/10.4161/bact.29866CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433PubMedPubMedCentralGoogle Scholar
  46. Jassim SAA, Limoges RG, El-Cheikh H (2016) Bacteriophage biocontrol in wastewater treatment. World J Microbiol Biotechnol 32(4).  https://doi.org/10.1007/s11274-016-2028-1
  47. Jofre J, Lucena F, Blanch AR, Muniesa M (2016) Coliphages as model organisms in the characterization and management of water resources. Water 8:199.  https://doi.org/10.3390/w8050199CrossRefGoogle Scholar
  48. Juhala RJ, Ford ME, Duda RL, Youlton A, Hatfull GF, Hendrix RW (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51.  https://doi.org/10.1006/jmbi.2000.3729CrossRefPubMedGoogle Scholar
  49. Keen EC (2015) A century of phage research: bacteriophages and the shaping of modern biology. BioEssays 37(1):6–9.  https://doi.org/10.1002/bies.201400152CrossRefPubMedPubMedCentralGoogle Scholar
  50. Khairnar K, Chandekar R, Nair A, Pal P, Paunikar WN (2016) Novel application of bacteriophage for controlling foaming in wastewater treatment plant- an eco-friendly approach. Bioengineered 7(1):46–49.  https://doi.org/10.1080/21655979.2015.1134066CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kim MS, Bae JW (2018) Lysogeny is prevalent and widely distributed in the murine gut microbiota. ISME J 12:1127–1141PubMedPubMedCentralGoogle Scholar
  52. Koonin EV, Makarova KS, Wolf YI (2017) Evolutionary genomics of defense systems in archaea and bacteria. Annu Rev Microbiol 71:233–261PubMedPubMedCentralGoogle Scholar
  53. Kotay SM, Datta T, Choi J, Goel R (2011) Biocontrol of biomass bulking caused by Haliscomenobacter hydrossis using a newly isolated lytic bacteriophage. Water Res 45:694–704PubMedGoogle Scholar
  54. Kropinski AM (2018) Bacteriophage research – what we have learnt and what still needs to be addressed. Res Microbiol 169:481–487.  https://doi.org/10.1016/j.resmic.2018.05.002CrossRefPubMedGoogle Scholar
  55. Landsberger M, Gandon S, Meaden S, Rollie C, Chevallereau A, Chabas H, Buckling A, Westra ER, van Houte S (2018) Anti-CRISPR phages cooperate to overcome CRISPR-Cas immunity. Cell 174(4):908–916.e12.  https://doi.org/10.1016/j.cell.2018.05.058CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lee S, Suwa M, Shigemura H (2019a) Metagenomic analysis of infectious F-specific RNA bacteriophage strains in wastewater treatment and disinfection processes. Pathogens 8(4). pii: E217.  https://doi.org/10.3390/pathogens8040217
  57. Lee S, Suwa M, Shigemura H (2019b) Occurrence and reduction of F-specific RNA bacteriophage genotypes as indicators of human norovirus at a wastewater treatment plant. J Water Health 17:50–62PubMedGoogle Scholar
  58. Levy A, Goren MG, Yosef I, Auster O, Manor M, Amitai G, Edgar R, Qimron U, Sorek R (2015) CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520:505–510PubMedPubMedCentralGoogle Scholar
  59. Liu M, Gill JJ, Young R, Summer EJ (2015) Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge. Sci Rep 5:13754.  https://doi.org/10.1038/srep13754CrossRefPubMedPubMedCentralGoogle Scholar
  60. Liu Q, Zhang H, Huang X (2019) Anti-CRISPR proteins targeting the CRISPR-Cas system enrich the toolkit for genetic engineering. FEBS J.  https://doi.org/10.1111/febs.15139
  61. Liu K, Sun MM, Ye M, Chao HZ, Zhao YC, Xia B, Jiao WT, Feng YF, Zheng XX, Liu MQ, Jiao JG, Hu F (2019) Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates. Environ Pollut 44:28–37Google Scholar
  62. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477PubMedGoogle Scholar
  63. Malone LM, Warring SL, Jackson SA, Warnecke C, Gardner PP, Gumy LF, Fineran PC (2020) A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity. Nat Microbiol 5(1):48–55.  https://doi.org/10.1038/s41564-019-0612-5CrossRefPubMedGoogle Scholar
  64. Matsubara K, Katayama H (2019) Development of a portable detection method for enteric viruses from ambient air and its application to a wastewater treatment plant. Pathogens 8(3). pii: E131.  https://doi.org/10.3390/pathogens8030131
  65. Mavrich TN, Hatfull GF (2019) Evolution of superinfection immunity in cluster a mycobacteriophages. mBio 10:e00971-19.  https://doi.org/10.1128/mBio.00971-19
  66. Montgomery MT, Guerrero Bustamante CA, Dedrick RM, Jacobs-Sera D, Hatfull GF (2019) Yet more evidence of collusion: a new viral defense system encoded by Gordonia phage CarolAnn. mBio 10:e02417-18.  https://doi.org/10.1128/mBio.02417-18.. 1983
  67. Ofir G, Sorek R (2018) Contemporary phage biology: from classic models to new insights. Cell 172:1260–1270PubMedGoogle Scholar
  68. Oppenheim AB, Kobiler O, Stavans J, Court DL, Adhya S (2005) Switches in bacteriophage lambda development. Annu Rev Genet 39:409–429Google Scholar
  69. Pawluk A, Bondy-Denomy J, Cheung VHW, Maxwell KL, Davidson AR (2014) A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio 5:e00896PubMedPubMedCentralGoogle Scholar
  70. Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J, Edraki A, Shah M, Sontheimer EJ, Maxwell KL et al (2016a) Naturally occurring off-switches for CRISPR-Cas9. Cell 167:1829–1838PubMedPubMedCentralGoogle Scholar
  71. Pawluk A, Staals RHJ, Taylor C, Watson BNJ, Saha S, Fineran PC, Maxwell KL, Davidson AR (2016b) Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol 1:16085PubMedGoogle Scholar
  72. Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16:12–17PubMedGoogle Scholar
  73. Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E (2019) Antibiotic resistance genes identified in wastewater treatment plant systems – a review. Sci Total Environ 697:134023.  https://doi.org/10.1016/j.scitotenv.2019.134023CrossRefPubMedGoogle Scholar
  74. Perez-Pascual D, Monnet V, Gardan R (2016) Bacterial cell–cell communication in the host via RRNPP peptide-binding regulators. Front Microbiol 7:706PubMedPubMedCentralGoogle Scholar
  75. Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, Hawkins JS, Lu CHS, Koo BM, Marta E, Shiver AL, Whitehead EH, Weissman JS, Brown ED, Qi LS, Huang KC, Gross CA (2016) A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165:1493–1506PubMedPubMedCentralGoogle Scholar
  76. Prasad RK, Chatterjee S, Mazumder PB, Gupta SK, Sharma S, Vairale MG, Datta S, Dwivedi SK, Gupta DK (2019) Bioethanol production from waste lignocelluloses: a review on microbial degradation potential. Chemosphere 231:588–606.  https://doi.org/10.1016/j.chemosphere.2019.05.142CrossRefPubMedGoogle Scholar
  77. Ravin NV (2015) Replication and maintenance of linear phage-plasmid N15. Microbiol Spectr 3(1):PLAS-0032-2014.  https://doi.org/10.1128/microbiolspec.PLAS-0032-2014
  78. Rocha-Estrada J, Aceves-Diez AE, Guarneros G, de la Torre M (2010) The RNPP family of quorum-sensing proteins in gram-positive bacteria. Appl Microbiol Biotechnol 87:913–923PubMedGoogle Scholar
  79. Rollins MF, Chowdhury S, Carter J, Golden SM, Wilkinson RA, Bondy-Denomy J, Lander GC, Wiedenheft B (2017) Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity. Proc Natl Acad Sci U S A 114:E5113–E5121PubMedPubMedCentralGoogle Scholar
  80. Safari F, Sharifi M, Farajnia S, Akbari B, Karimi Baba Ahmadi M, Negahdaripour M, Ghasemi Y (2019) The interaction of phages and bacteria: the co-evolutionary arms race. Crit Rev Biotechnol:1–19.  https://doi.org/10.1080/07388551.2019.1674774
  81. Santiana M, Ghosh S, Ho BA, Rajasekaran V, Du WL, Mutsafi Y, De Jésus-Diaz DA, Sosnovtsev SV, Levenson EA, Parra GI, Takvorian PM, Cali A, Bleck C, Vlasova AN, Saif LJ, Patton JT, Lopalco P, Corcelli A, Green KY, Altan-Bonnet N (2018) Vesicle-cloaked virus clusters are optimal units for inter-organismal viral transmission. Cell Host Microbe 24(2):208–220.e8.  https://doi.org/10.1016/j.chom.2018.07.006CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, Vairale MG (2016) Bacteriophages and its applications: an overview. Folia Microbiologica (Springer) 62:17–55.  https://doi.org/10.1007/s12223-016-0471-xCrossRefGoogle Scholar
  83. Stokar-Avihail A, Tal N, Erez Z, Lopatina A, Sorek R (2019) Widespread utilization of peptide communication in phages infecting soil and pathogenic Bacteria. Cell Host Microbe 25(5):746–755.e5.  https://doi.org/10.1016/j.chom.2019.03.017CrossRefPubMedPubMedCentralGoogle Scholar
  84. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659PubMedPubMedCentralGoogle Scholar
  85. Sun M, Ye M, Jiao W, Feng Y, Yu P, Liu M, Jiao J, He X, Liu K, Zhao Y, Wu J, Jiang X, Hu F (2018) Changes in tetracycline partitioning and bacteria/phage comediated ARGs in microplastic contaminated greenhouse soil facilitated by sophorolipid. J Hazard Mater 345:131–139PubMedGoogle Scholar
  86. Sun M, Ye M, Zhang Z, Zhang S, Zhao Y, Deng S, Kong L, Ying R, Xia B, Jiao W, Cheng J, Feng Y, Liu M, Hu F (2019) Biochar combined with polyvalent phage therapy to mitigate antibiotic resistance pathogenic bacteria vertical transfer risk in an undisturbed soil column system. J Hazard Mater 365:1–8PubMedGoogle Scholar
  87. Taylor VL, Fitzpatrick AD, Islam Z, Maxwell KL (2019) The diverse impacts of phage morons on bacterial fitness and virulence. Adv Virus Res 103:1–31.  https://doi.org/10.1016/bs.aivir.2018.08.001CrossRefPubMedGoogle Scholar
  88. Tolstoy I, Kropinski AM, Brister JR (2018) Bacteriophage taxonomy: An evolving discipline. Methods Mol Biol 1693:57–71Google Scholar
  89. Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 2:1241–1243Google Scholar
  90. Twort FW (1922) The bacteriophage: the breaking down of bacteria by associated filter passing lysins. Br Med J 2:293–296Google Scholar
  91. Twort FW (1949) The discovery of the bacteriophage. Sci News 14:33–34Google Scholar
  92. van Houte S, Ekroth AKE, Broniewski JM, Chabas H, Ashby B, Bondy-Denomy J, Gandon S, Boots M, Paterson S, Buckling A, Westra ER (2016) The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532:385–388PubMedPubMedCentralGoogle Scholar
  93. Wang Q, Guan Z, Pei K, Wang J, Liu Z, Yin P, Peng D, Zou T (2018) Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision. Nat Microbiol 3(11):1266–1273.  https://doi.org/10.1038/s41564-018-0239-yCrossRefPubMedGoogle Scholar
  94. Witzany G (2006) From umwelt to Mitwelt: natural laws versus rule-governed sign-mediated interactions (rsi’s). Semiotica 2006:425–438Google Scholar
  95. Witzany G (2010) Uniform categorization of biocommunication in bacteria, fungi and plants. World J Biol Chem 1(5):160–180.  https://doi.org/10.4331/wjbc.v1.i5.160CrossRefPubMedPubMedCentralGoogle Scholar
  96. Wu B, Wang R, Fane AG (2017) The roles of bacteriophages in membrane-based water and wastewater treatment processes: a review. Water Res 110:120–132.  https://doi.org/10.1016/j.watres.2016.12.004CrossRefPubMedGoogle Scholar
  97. Xue KS, Hooper KA, Ollodart AR, Dingens AS, Bloom JD (2016) Cooperation between distinct viral variants promotes growth of H3N2 influenza in cell culture. eLife 5:e13974.  https://doi.org/10.7554/eLife.13974CrossRefPubMedPubMedCentralGoogle Scholar
  98. Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W (2019) A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environ Int 129:488–496PubMedGoogle Scholar
  99. Youderian P, Vershon A, Bouvier S, Sauer RT, Susskind MM (1983) Changing the DNA-binding specificity of a repressor. Cell 35:777–783.  https://doi.org/10.1016/0092-8674(83)90110-1CrossRefPubMedGoogle Scholar
  100. Zhao Y, Ye M, Zhang X, Sun M, Zhang Z, Chao H, Huang D, Wan J, Zhang S, Jiang X, Sun D, Yuan Y, Hu F (2019) Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. Sci Total Environ 657:918–925PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Biodegradation Technology Division, Defence Research LaboratoryDRDOTezpurIndia

Personalised recommendations