Advertisement

Phage Therapy in Cystic Fibrosis. Challenges and Perspectives

  • Ersilia V. Fiscarelli
  • Martina Rossitto
  • Paola RosatiEmail author
Chapter
  • 53 Downloads

Abstract

Multidrug-resistant Pseudomonas aeruginosa (MDR PA) produces biofilm thus causing colonization, pulmonary failure and death in patients with cystic fibrosis (CF). Despite prolonging CF survival, antibiotics fail to eradicate MDR PA. A therapeutic alternative is phage therapy (PT). During decades, although testing lytic phages improved their efficacy in vitro to lyse PA biofilm, how they can persistently act in vivo, even in personalized approaches, remain debatable. We report our appraised results from 22 papers on lytic phages tested in vitro and in vivo on pulmonary and non-pulmonary models infected by various PA strains. Challenges and perspectives on PT in CF to advance custom-based approaches to treat or prevent MDR PA, combined with or alternative to antibiotics, are then discussed. To overcome barriers in international regulatory bodies on phages as medicines, we claim a new definition of advanced phage biological therapy aiming to reach a global consensus thus advancing PT in CF.

References

  1. Abedon ST (2017a) Information phage therapy research should report. Pharmaceuticals 10:43.  https://doi.org/10.3390/ph10020043CrossRefPubMedCentralGoogle Scholar
  2. Abedon ST (2017b) Phage name check. http://www.phage.org/phage_name_check.html. Cited 26 Apr 2017
  3. Ackermann HW (2011) Bacteriophage taxonomy. Microbiol Aust 32:90–94CrossRefGoogle Scholar
  4. Adriaenssens E, Brister JR (2017) How to name and classify your phage: an informal guide. Viruses 9:70.  https://doi.org/10.3390/v9040070CrossRefPubMedCentralGoogle Scholar
  5. Alemayehu D, Casey PG, McAuliffe O, Guinane CM, Martin JG, Shanahan F, Coffey A, Ross RP, Hill C (2012) Bacteriophages ΦMR299-2 and ΦNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. M Bio 3:e00029–e00012.  https://doi.org/10.1128/mBio.00029-12CrossRefPubMedGoogle Scholar
  6. Alseth EO, Pursey E, Luján AM, McLeod I, Rollie C, Westra ER (2019) Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature 574:549–552CrossRefGoogle Scholar
  7. Alves DR, Perez-Esteban P, Kot W, Bean J, Arnot T, Hansen L, Enright MC, Jenkins ATA (2015) A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 9:61–74.  https://doi.org/10.1111/1751-7915.12316CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anderson GG (2012) Pseudomonas aeruginosa biofilm formation in the CF lung and its implications for therapy. In: Sriramulu D (ed) Cystic fibrosis – renewed hopes through research. IntechOpen, London, pp 153–180Google Scholar
  9. Azeredo J, Sutherland IW (2008) The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol 9:261–266CrossRefGoogle Scholar
  10. Bacci G, Paganin P, Lopez L, Vanni C, Dalmastri C, Cantale C, Daddiego L, Perrotta G, Dolce D, Morelli P et al (2016) Pyrosequencing unveils cystic fibrosis lung microbiome differences associated with a severe lung function decline. PLoS One 11:e0156807.  https://doi.org/10.1371/journal.pone.0156807CrossRefPubMedPubMedCentralGoogle Scholar
  11. Barbu EM, Cady KC, Hubby B (2016) Phage therapy in the era of synthetic biology. Cold Spring Harb Perspect Biol 8:a023879CrossRefGoogle Scholar
  12. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, Cutting AS, Doran KS et al (2013) Bacteriophage adhering to mucus provide a non–host-derived immunity. Proc Natl Acad Sci U S A 110:10771–10776.  https://doi.org/10.1073/pnas.1305923110CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bassetti M, Ginocchio F, Mikulska M (2011) New treatment options against gram-negative organisms. Crit Care 15:215.  https://doi.org/10.1186/cc9997CrossRefPubMedPubMedCentralGoogle Scholar
  14. Battán PC, Barnes AI, Albesa I (2004) Resistance to oxidative stress caused by ceftazidime and piperacillin in a biofilm of Pseudomonas. Luminescence 19:265–270.  https://doi.org/10.1002/bio.779CrossRefPubMedGoogle Scholar
  15. Baylor NW, Midthun K (2008) Regulation and testing of vaccines. In: Plotkin S, Orenstein W, Offit PA (eds) Vaccines, 5th edn. WB Saunders, Philadelphia, pp 1611–1627CrossRefGoogle Scholar
  16. Beeton ML, Alves DR, Enright MC, Jenkins ATA (2015) Assessing phage therapy against Pseudomonas aeruginosa using a Galleria mellonella infection model. Int J Antimicrob Agents 46:196–200.  https://doi.org/10.1016/j.ijantimicag.2015.04.005CrossRefPubMedGoogle Scholar
  17. Betts A, Vasse M, Kaltz O, Hochberg ME (2013) Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol Appl 6:1054–1063.  https://doi.org/10.1111/eva.12085CrossRefPubMedPubMedCentralGoogle Scholar
  18. Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril RC (2002) Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 70:204–210.  https://doi.org/10.1128/IAI.70.1.204-210.2002CrossRefPubMedPubMedCentralGoogle Scholar
  19. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces insurance effects in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635.  https://doi.org/10.1073/pnas.0407460101CrossRefPubMedPubMedCentralGoogle Scholar
  20. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophages genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432.  https://doi.org/10.1038/nature11723CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bradley DE, Robertson D (1968) The structure and infective process of a contractile Pseudomonas aeruginosa bacteriophage. J Gen Virol 3:247–254CrossRefGoogle Scholar
  22. Brunak S, Danchin A, Hattori M, Nakamura H, Shinozaki K, Matise T, Preuss D (2002) Nucleotide sequence database policies. Science 298:1333–1334CrossRefGoogle Scholar
  23. Brüssow H (2012) What is needed for phage therapy to become a reality in western medicine? Virology 434:138–142.  https://doi.org/10.1016/j.virol.2012.09.015CrossRefPubMedGoogle Scholar
  24. Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O’Toole GA (2012) The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J Bacteriol 194:5728–5738.  https://doi.org/10.1128/JB.01184-12CrossRefPubMedPubMedCentralGoogle Scholar
  25. Caplan A (2015) Morals, microbes, and methods. Lancet 385:e45.  https://doi.org/10.1016/S0140-6736(15)60928-XCrossRefGoogle Scholar
  26. Carrigy NB, Chang RY, Leung SS, Harrison M, Petrova Z, Pope WH, Hatfull GF, Britton WJ, Chan HK, Sauvageau D et al (2017) Anti-tuberculosis bacteriophage D29 delivery with a vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler. Pharm Res 34:2084–2096.  https://doi.org/10.1007/s11095-017-2213-4CrossRefPubMedGoogle Scholar
  27. Chan BK, Abedon ST (2012) Phage therapy pharmacology: phage cocktails. Adv Appl Microbiol 78:1–23.  https://doi.org/10.1016/B978-0-12-394805-2.00001-4CrossRefPubMedGoogle Scholar
  28. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783.  https://doi.org/10.2217/fmb.13.47CrossRefPubMedGoogle Scholar
  29. Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717CrossRefGoogle Scholar
  30. Chang RYK, Chen K, Wang J, Wallin M, Britton W, Morales S, Kutter E, Li J, Chan HK (2017) Anti-Pseudomonal activity of phage PEV20 in a dry powder formulation. A proof-of-principle study in a murine lung infection model. Antimicrob Agents Chemother AAC-1714.  https://doi.org/10.1128/AAC.01714-17
  31. Chaturongakul S, Ounjai P (2014) Phage-host interplay: examples from tailed phages and Gram-negative bacterial pathogens. Front Microbiol 5:442.  https://doi.org/10.3389/fmicb.2014.00442CrossRefPubMedPubMedCentralGoogle Scholar
  32. Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One 12:e0168615CrossRefGoogle Scholar
  33. Chmiel JF, Davis PB (2003) State of the art: why do the lungs of patients with cystic fibrosis become infected and why can’t they clear the infection? Respir Res 4:8.  https://doi.org/10.1186/1465-9921-4-8CrossRefPubMedPubMedCentralGoogle Scholar
  34. Clokie MR, Millard AD, Letarov AV, Heaphy S (2011) Phages in nature. Bacteriophage 1:31–45.  https://doi.org/10.4161/bact.1.1.14942CrossRefPubMedPubMedCentralGoogle Scholar
  35. Cochran W, Suh SJ, McFeters G, Stewart P (2000) Role of RpoS and AlgT in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine. J Appl Microbiol 88:546–553.  https://doi.org/10.1046/j.1365-2672.2000.00995.xCrossRefPubMedGoogle Scholar
  36. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322.  https://doi.org/10.1126/science.284.5418.1318CrossRefPubMedGoogle Scholar
  37. Costerton W, Veeh R, Shirtliff M, Pasmore M, Post C, Ehrlich G (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477.  https://doi.org/10.1172/JCI200320365CrossRefPubMedPubMedCentralGoogle Scholar
  38. Coulter LB, McLean RJ, Rohde RE, Aron GM (2014) Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses 6:3778–3786.  https://doi.org/10.3390/v6103778CrossRefPubMedPubMedCentralGoogle Scholar
  39. Criscuolo E, Spadini S, Lamanna J, Ferro M, Burioni R (2017) Bacteriophages and their immunological applications against infectious threats. J Immunol Res 2017:3780697.  https://doi.org/10.1155/2017/3780697CrossRefPubMedPubMedCentralGoogle Scholar
  40. D’Hérelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci Ser D 165:373–375Google Scholar
  41. Danis-Wlodarczyk K, Olszak T, Arabski M, Wasik S, Majkowska-Skrobek G, Augustyniak D, Gula G, Briers Y, Jang HB, Vandenheuvel D et al (2015) Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm. PLoS One 10:e0137015.  https://doi.org/10.1371/journal.pone.0127603CrossRefPubMedPubMedCentralGoogle Scholar
  42. Danis-Wlodarczyk K, Vandenheuvel D, Jang HB, Briers Y, Olszak T, Arabski M, Wasik S, Drabik M, Higgins G, Tyrrell J et al (2016) A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections. Sci Rep 6:28115.  https://doi.org/10.1038/srep28115CrossRefPubMedPubMedCentralGoogle Scholar
  43. Darch SE, Kragh KN, Abbott EA, Bjarnsholt T, Bull JJ, Whiteley M (2017) Phage inhibit pathogen dissemination by targeting bacterial migrants in a chronic infection model. M Bio 8:e00240–e00217.  https://doi.org/10.1128/mBio.00240-17CrossRefPubMedGoogle Scholar
  44. Davies KJ, Lloyd D, Boddy L (1989) The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa. J Gen Microbiol 135:2445–2451.  https://doi.org/10.1099/00221287-135-9-2445CrossRefPubMedGoogle Scholar
  45. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201:1096–1104.  https://doi.org/10.1086/651135CrossRefPubMedGoogle Scholar
  46. Deligianni E, Pattison S, Berrar D, Ternan NG, Haylock RW, Moore JE, Elborn SJ, Dooley JSG (2010) Pseudomonas aeruginosa cystic fibrosis isolates of similar RAPD genotype exhibit diversity in biofilm forming ability in vitro. BMC Microbiol 10:38.  https://doi.org/10.1186/1471-2180-10-38CrossRefPubMedPubMedCentralGoogle Scholar
  47. Djebara S, Maussen C, De Vos D, Merabishvili M, Damanet B, Win Pang K, De Leenheer P, Strachinaru I, Soentjens P, Pirnay JP (2019) Processing phage therapy requests in a Brussels military hospital: lessons identified. Viruses 11:265.  https://doi.org/10.3390/v11030265CrossRefPubMedCentralGoogle Scholar
  48. Domingo-Calap P, Georgel P, Bahram S (2016) Back to the future: bacteriophages as promising therapeutic tools. HLA 87:133–140.  https://doi.org/10.1111/tan.12742CrossRefPubMedGoogle Scholar
  49. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193.  https://doi.org/10.1128/CMR.15.2.167-193.2002CrossRefPubMedPubMedCentralGoogle Scholar
  50. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R (2012) Learning from bacteriophages-advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 13:699–722.  https://doi.org/10.2174/138920312804871193CrossRefPubMedPubMedCentralGoogle Scholar
  51. Edgar R, Friedman N, Molshanski-Mor S, Qimron U (2012) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol 78:744–751.  https://doi.org/10.1128/AEM.05741-11CrossRefPubMedPubMedCentralGoogle Scholar
  52. Essoh C, Blouin Y, Loukou G, Cablanmian A, Lathro S, Kutter E, Thien HV, Vergnaud G, Pourcel C (2013) The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages. PLoS One 8:e60575.  https://doi.org/10.1371/journal.pone.0060575CrossRefPubMedPubMedCentralGoogle Scholar
  53. European Commission (2001) Directive (EC) 83/2001 of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. Available at: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32001L0083. Cited 28 Nov 2001
  54. European Commission (2004) Regulation (EC) 726/2004 of the European Parliament and of the Council of 31 March 2004 laying down Community procedures for the authorisation and supervision of medicinal products for human and veterinary use and establishing a European Medicines Agency. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004R0726. Cited 30 Apr 2004
  55. European Commission (2014) Regulation (EC) 536/2014 of the European Parliament and of the Council of 16 April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC. Available at: https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-1/reg_2014_536/reg_2014_536_en.pdf. Cited 16 Apr 2014
  56. European Medicines Agency, EMA (2015) Adaptive pathways. Available at: https://www.ema.europa.eu/en/human-regulatory/research-development/adaptive-pathways. Cited 20 Nov 2015
  57. Farrell PM, Kosorok MR, Rock MJ, Laxova A, Zeng L, Lai HC, Hoffman G, Laessig RH, Splaingard ML (2001) Early diagnosis of cystic fibrosis through neonatal screening prevents severe malnutrition and improves long-term growth. Wisconsin Cystic Fibrosis Neonatal Screening Study Group. Pediatrics 107:1–13CrossRefGoogle Scholar
  58. Fauconnier A (2019) Phage therapy regulation: from night to dawn. Viruses 11:352.  https://doi.org/10.3390/v11040352CrossRefPubMedCentralGoogle Scholar
  59. Food and Drug Administration (FDA) (1998) Emergency use of an investigational drug or biologic. In: Investigational new drug (IND) application. Available at: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/emergency-use-investigational-drug-or-biologic. Cited 12 July 2018
  60. Food and Drug Administration (FDA) (2014) Section 503A of the Federal Food, Drug, and Cosmetic Act. In: FDA guidance on pharmacy compounding of human drug products. https://www.fda.gov/drugs/human-drug-compounding/section-503a-federal-food-drug-and-cosmetic-act. Cited 21 June 2018
  61. Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux et al (2018) Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother 62:e02573–e02517.  https://doi.org/10.1128/AAC.02573-17CrossRefPubMedPubMedCentralGoogle Scholar
  62. Frederiksen B, Koch C, Høiby N (1997) Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 23:330–335.  https://doi.org/10.1002/(SICI)1099-0496(199705)23:5<330:AID-PPUL4>3.0.CO;2-OCrossRefPubMedGoogle Scholar
  63. Friman VP, Soanes-Brown D, Sierocinski P, Molin S, Johansen HK, Merabishvili M, Pirnay JP, De Vos D, Buckling A (2016) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29:188–198.  https://doi.org/10.1111/jeb.12774CrossRefPubMedGoogle Scholar
  64. Furfaro LL, Payne MS, Chang BJ (2018) Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol 8.  https://doi.org/10.3389/fcimb.2018.00376
  65. Furukawa S, Kuchma S, O’Toole G (2006) Keeping their options open: acute versus persistent infections. J Bacteriol 188:1211–1217.  https://doi.org/10.1128/JB.188.4.1211-1217.2006CrossRefPubMedPubMedCentralGoogle Scholar
  66. Garbe J, Wesche A, Bunk B, Kazmierczak M, Selezska K, Rohde C, Sikorski J, Rohde M, Jahn D, Schobert M (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301.  https://doi.org/10.1186/1471-2180-10-301CrossRefPubMedPubMedCentralGoogle Scholar
  67. Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173.  https://doi.org/10.1111/2049-632X.12033CrossRefPubMedGoogle Scholar
  68. Ghequire MGK, De Mot R (2015) The tailocin tale: peeling off phage tails. Trends Microbiol 23:587–590.  https://doi.org/10.1016/j.tim.2015.07.011CrossRefPubMedGoogle Scholar
  69. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951.  https://doi.org/10.1164/rccm.200304-505SOCrossRefPubMedGoogle Scholar
  70. Gómez MI, Prince A (2007) Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7:244–251.  https://doi.org/10.1016/j.coph.2006.12.005CrossRefPubMedGoogle Scholar
  71. Gooderham WJ, Hancock RE (2009) Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa. FEMS Microbiol Rev 33:279–294.  https://doi.org/10.1111/j.1574-6976.2008.00135.xCrossRefPubMedGoogle Scholar
  72. Górski A, Międzybrodzki R, Łobocka M, Głowacka-Rutkowska A, Bednarek A, Borysowski J, Jończyk-Matysiak E, Łusiak-Szelachowska M, Weber-Dąbrowska B, Bagińska N et al (2018) Phage therapy: what have we learned? Viruses 10:288.  https://doi.org/10.3390/v10060288CrossRefPubMedCentralGoogle Scholar
  73. Hall AR, De Vos D, Friman VP, Pirnay JP, Buckling A (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652.  https://doi.org/10.1128/AEM.00757-12CrossRefPubMedPubMedCentralGoogle Scholar
  74. Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ (2001) Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 67:2746–2753.  https://doi.org/10.1128/AEM.67.6.2746-2753.2001CrossRefPubMedPubMedCentralGoogle Scholar
  75. Harper DR, Parracho HM, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S (2014) Bacteriophages and biofilms. Antibiotics 3:270–284.  https://doi.org/10.3390/antibiotics3030270CrossRefPubMedCentralGoogle Scholar
  76. Henry M, Lavigne R, Debarbieux L (2013) Predicting in vivo efficacy of therapeutic bacteriophages used to treat pulmonary infections. Antimicrob Agents Chemother 57:5961–5968.  https://doi.org/10.1128/AAC.01596-13CrossRefPubMedPubMedCentralGoogle Scholar
  77. Henry KA, Arbabi-Ghahroudi M, Scott JK (2015) Beyond phage display: non-traditional applications of the filamentous bacteriophage as a vaccine carrier, therapeutic biologic, and bioconjugation scaffold. Front Microbiol 6:755.  https://doi.org/10.3389/fmicb.2015.00755CrossRefPubMedPubMedCentralGoogle Scholar
  78. Himmelweit F (1945) Combined action of penicillin and bacteriophage on Staphylococci. Lancet 246:104–105.  https://doi.org/10.1016/S0140-6736(45)91422-XCrossRefGoogle Scholar
  79. Høiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5:1663–1674.  https://doi.org/10.2217/fmb.10.125CrossRefPubMedGoogle Scholar
  80. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32:e00031–e00019CrossRefGoogle Scholar
  81. Hraiech S, Brégeon F, Rolain JM (2015) Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Des Dev Ther 9:3653–3663.  https://doi.org/10.2147/DDDT.S53123CrossRefGoogle Scholar
  82. Hurley MN, Cámara M, Smyth AR (2012) Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J 40:1014–1023.  https://doi.org/10.1183/09031936.00042012CrossRefPubMedPubMedCentralGoogle Scholar
  83. International Nucleotide Sequence Database Consortium (INSDC) (2018) The DDBJ/ENA/GenBank Feature Table Definition Version 10.8. Available at: http://www.insdc.org/. Cited December 2018
  84. Jassim SA, Limoges RG (2014) Natural solution to antibiotic resistance: bacteriophages ‘the living drugs’. World J Microbiol Biotechnol 30:2153–2170.  https://doi.org/10.1007/s11274-014-1655-1657CrossRefPubMedPubMedCentralGoogle Scholar
  85. Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA, Resch G, Rousseau AF, Ravat F, Carsin H, Le Floch R et al (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19:35–45CrossRefGoogle Scholar
  86. Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339.  https://doi.org/10.4049/jimmunol.171.8.4329CrossRefPubMedGoogle Scholar
  87. Kakabadze E, Makalatia K, Grdzelishvili N, Bakuradze N, Goderdzishvili M, Kusradze I, Phoba MF, Lunguya O, Lood C, Lavigne R et al (2018) Selection of potential therapeutic bacteriophages that lyse a CTX-M-15 extended spectrum β-lactamase producing Salmonella enterica serovar typhi strain from the Democratic Republic of the Congo. Viruses 10:172CrossRefGoogle Scholar
  88. Kaur T, Nafissi N, Wasfi O, Sheldon K, Wettig S, Slavcev R (2012) Immunocompatibility of bacteriophages as nanomedicines. J Nanotech 2012:ID 247427.  https://doi.org/10.1155/2012/247427CrossRefGoogle Scholar
  89. Keogh RH, Szczesniak R, Taylor-Robinson D, Bilton D (2018) Up-to-date and projected estimates of survival for people with cystic fibrosis using baseline characteristics: a longitudinal study using UK patient registry data. J Cyst Fibros 17(2):218–227.  https://doi.org/10.1016/j.jcf.2017.11.019CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–1080CrossRefGoogle Scholar
  91. Kimmelman J, Federico C (2017) Consider drug efficacy before first-in-human trials. Nature 542:25–27.  https://doi.org/10.1038/542025aCrossRefPubMedGoogle Scholar
  92. Koskella B, Brockhurst MA (2014) Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38:916–931CrossRefGoogle Scholar
  93. Krylov V (2014) Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy. In: Maramorosch K, Murphy FA (eds) Advances in virus research, vol 88. Elsevier, Oxford, pp 227–278Google Scholar
  94. Krylov V, Shaburova O, Pleteneva E, Bourkaltseva M, Krylov S, Kaplan A, Chesnokova E, Kulakov L, Magill D, Polygach O (2016) Modular approach to select bacteriophages targeting Pseudomonas aeruginosa for their application to children suffering with cystic fibrosis. Front Microbiol 7:1631.  https://doi.org/10.3389/fmicb.2016.01631CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kutateladze M, Adamia R (2008) Phage therapy experience at the Eliava Institute. Med Mal Infect 38(8):426–430.  https://doi.org/10.1016/j.medmal.2008.06.023CrossRefPubMedGoogle Scholar
  96. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595.  https://doi.org/10.1016/j.tibtech.2010.08.001CrossRefPubMedGoogle Scholar
  97. Larché J, Pouillot F, Essoh C, Libisch B, Straut M, Lee JC, Soler C, Lamarca R, Gleize E, Gabard J et al (2012) Rapid identification of international multidrug-resistant Pseudomonas aeruginosa clones by multiple-locus variable number of tandem repeats analysis and investigation of their susceptibility to lytic bacteriophages. Antimicrob Agents Chemother 56:6175–6180.  https://doi.org/10.1128/AAC.01233-12CrossRefPubMedPubMedCentralGoogle Scholar
  98. Latino L, Midoux C, Vergnaud G, Pourcel C (2019) Investigation of Pseudomonas aeruginosa strain PcyII-10 variants resisting infection by N4-like phage Ab09 in search for genes involved in phage adsorption. PLoS One 14:e0215456.  https://doi.org/10.1371/journal.pone.0215456CrossRefPubMedPubMedCentralGoogle Scholar
  99. Lavelle GM, White MM, Browne N, McElvaney NG, Reeves EP (2016) Animal models of cystic fibrosis pathology: phenotypic parallels and divergences. Biomed Res Int 2016:5258727.  https://doi.org/10.1155/2016/5258727CrossRefPubMedPubMedCentralGoogle Scholar
  100. LaVergne S, Hamilton T, Biswas B, Kumaraswamy M, Schooley RT, Wooten D (2018) Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis 5(4):ofy064.  https://doi.org/10.1093/ofid/ofy064CrossRefPubMedPubMedCentralGoogle Scholar
  101. Lehman S, Branston S, Smrekar F, Pabary R, Alton E, Davies J, Morales S (2016) Bacteriophage therapy for the treatment of P. aeruginosa infections in cystic fibrosis patients. Abstract. In: Proceedings from the EMBO Conference 2016. Available at: http://pcwww.liv.ac.uk/~hallison/EMBOVoM2016/data/abstracts/abstract_275.html. Cited July 2016
  102. Leyens L, Richer É, Melien Ø, Ballensiefen W, Brand A (2015) Available tools to facilitate early patient access to medicines in the EU and the USA: analysis of conditional approvals and the implications for personalized medicine. Public Health Genomics 18(5):249–259.  https://doi.org/10.1159/000437137CrossRefPubMedGoogle Scholar
  103. Li Z, Kosorok MR, Farrell PM, Laxova A, West SE, Green CG, Collins J, Rock MJ, Splaingard ML (2005) Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 293:581–588.  https://doi.org/10.1001/jama.293.5.581CrossRefPubMedGoogle Scholar
  104. Li G, Shen M, Yang Y, Le S, Li M, Wang J, Lu S (2018) Adaptation of Pseudomonas aeruginosa to phage PaP1 predation via O-antigen polymerase mutation. Front Microbiol 9:1170.  https://doi.org/10.3389/fmicb.2018.01170CrossRefPubMedPubMedCentralGoogle Scholar
  105. Lim WS, Phang KK, Tan AHM, Li SFY, Ow DSW (2016) Small colony variants and single nucleotide variations in Pf1 region of PB1 phage-resistant Pseudomonas aeruginosa. Front Microbiol 7:282.  https://doi.org/10.3389/fmicb.2016.00282CrossRefPubMedPubMedCentralGoogle Scholar
  106. Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8:162–173.  https://doi.org/10.4292/wjgpt.v8.i3.162CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lin Y, Chang RYK, Britton WJ, Morales S, Kutter E, Chan HK (2018) Synergy of nebulized phage PEV20 and ciprofloxacin combination against Pseudomonas aeruginosa. Int J Pharm 551:158–165.  https://doi.org/10.1016/j.ijpharm.2018.09.024CrossRefPubMedPubMedCentralGoogle Scholar
  108. Loc-Carrillo C, Abedon ST (2011) Pros and cons of phage therapy. Bacteriophage 1:111–114.  https://doi.org/10.4161/bact.1.2.14590CrossRefPubMedPubMedCentralGoogle Scholar
  109. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202.  https://doi.org/10.1073/pnas.0704624104CrossRefPubMedPubMedCentralGoogle Scholar
  110. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281.  https://doi.org/10.1111/j.1469-0691.2011.03570.xCrossRefPubMedGoogle Scholar
  111. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39CrossRefGoogle Scholar
  112. Martis N, Leroy S, Blanc V (2014) Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect 69:1–12.  https://doi.org/10.1016/j.jinf.2014.03.001CrossRefPubMedGoogle Scholar
  113. Matinkhoo S, Lynch KH, Dennis JJ, Finlay WH, Vehring R (2011) Spray-dried respirable powders containing bacteriophages for the treatment of pulmonary infections. J Pharm Sci 100:5197–5205.  https://doi.org/10.1002/jps.22715CrossRefPubMedGoogle Scholar
  114. Mattila S, Ruotsalainen P, Jalasvuori M (2015) On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front Microbiol 6:1271.  https://doi.org/10.3389/fmicb.2015.01271CrossRefPubMedPubMedCentralGoogle Scholar
  115. Mendes JJ, Leandro C, Mottola C, Barbosa R, Silva FA, Oliveira M, Vilela CL, Melo-Cristino J, Górski A, Pimentel M (2014) In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 63:1055–1065.  https://doi.org/10.1099/jmm.0.071753-0CrossRefPubMedGoogle Scholar
  116. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4:e4944CrossRefGoogle Scholar
  117. Merelle ME, Schouten JP, Gerritsen J, Dankert-Roelse JE (2001) Influence of neonatal screening and centralized treatment on long-term clinical outcome and survival of CF patients. Eur Respir J 18:306–315CrossRefGoogle Scholar
  118. Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2:489–497.  https://doi.org/10.1038/nrd1111CrossRefPubMedGoogle Scholar
  119. Mirzaei MK, Nilsson AS (2015) Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One 10:e0118557.  https://doi.org/10.1371/journal.pone.0118557CrossRefGoogle Scholar
  120. Moelling K, Broecker F, Willy C (2018) Wake-up call: we need phage therapy now. Viruses 5;10(12).  https://doi.org/10.3390/v10120688
  121. Moreau-Marquis S, Stantona BA, OToole GA (2008) Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway: a short review. Pulm Pharmacol Ther 21:595–599.  https://doi.org/10.1016/j.pupt.2007.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  122. Morello E, Saussereau E, Maura D, Huerre M, Touqui L, Debarbieux L (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One 6:e16963.  https://doi.org/10.1371/journal.pone.0016963CrossRefPubMedPubMedCentralGoogle Scholar
  123. Moretti S, Renga G, Oikonomou V, Galosi C, Pariano M, Iannitti RG, Borghi M, Puccetti M, De Zuani M, Pucillo CE et al (2017) A mast cell-ILC2-Th9 pathway promotes lung inflammation in cystic fibrosis. Nat Commun 8:14017.  https://doi.org/10.1038/ncomms14017CrossRefPubMedPubMedCentralGoogle Scholar
  124. Moskowitz SM, Foster JM, Emerson J, Burns JL (2004) Clinically feasible biofilm susceptibility assay for isolates of Pseudomonas aeruginosa from patients with cystic fibrosis. J Clin Microbiol 42:1915–1922.  https://doi.org/10.1128/JCM.42.5.1915-1922.2004CrossRefPubMedPubMedCentralGoogle Scholar
  125. Mumford R, Friman VP (2017) Bacterial competition and quorum-sensing signalling shape the eco-evolutionary outcomes of model in vitro phage therapy. Evol Appl 10:161–169.  https://doi.org/10.1111/eva.12435CrossRefPubMedGoogle Scholar
  126. Murray TS, Egan M, Kazmierczak BI (2007) Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr 19:83–88.  https://doi.org/10.1097/MOP.0b013e3280123a5dCrossRefPubMedGoogle Scholar
  127. Nadithe V, Rahamatalla M, Finlay WH, Mercer JR, Samuel J (2003) Evaluation of nose-only aerosol inhalation chamber and comparison of experimental results with mathematical simulation of aerosol deposition in mouse lungs. J Pharm Sci 92:1066–1076.  https://doi.org/10.1002/jps.10379CrossRefPubMedGoogle Scholar
  128. National Heart, Lung, and Blood Institute (NHLBI) Information Center, The Cystic Fibrosis Foundation (1995) Cystic fibrosis. Bethesda, MD. Available at: https://www.cdc.gov/scienceambassador/documents/cystic-fibrosis-fact-sheet.pdf. Cited November 1995
  129. Nilsson AS (2019) Pharmacological limitations of phage therapy. Ups J Med Sci 14:1–10.  https://doi.org/10.1080/03009734.2019.1688433CrossRefGoogle Scholar
  130. Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAM (2016) Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alex Med J 52:99–105.  https://doi.org/10.1016/j.ajme.2015.05.002CrossRefGoogle Scholar
  131. Olszak T, Zarnowiec P, Kaca W, Danis-Wlodarczyk K, Augustyniak D, Drevinek P, de Soyza A, McClean S, Drulis-Kawa Z (2015) In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Appl Microbiol Biotechnol 99:6021–6033.  https://doi.org/10.1007/s00253-015-6492-6CrossRefPubMedPubMedCentralGoogle Scholar
  132. O’Toole GA (2018) Cystic fibrosis airway microbiome: overturning the old, opening the way for the new. J Bacteriol 200:e00561–e00517.  https://doi.org/10.1128/JB.00561-17CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pabary R, Singh C, Morales S, Bush A, Alshafi K, Bilton D, Alton EW, Smithyman A, Davies JC (2016) Anti-pseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother 60:744–751.  https://doi.org/10.1128/AAC.01426-15CrossRefPubMedPubMedCentralGoogle Scholar
  134. Parfitt T (2005) Georgia: an unlikely stronghold for bacteriophage therapy. Lancet 9478:2166–2167CrossRefGoogle Scholar
  135. Parks QM, Young RL, Poch KR, Malcolm KC, Vasil ML, Nick JA (2009) Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 58:492–502.  https://doi.org/10.1099/jmm.0.005728-0CrossRefPubMedPubMedCentralGoogle Scholar
  136. Parracho HMRT, Burrowes BH, Enright MC, McConville ML, Harper DR (2012) The role of regulated clinical trials in the development of bacteriophage therapeutics. J Mol Genet Med 6:279–286CrossRefGoogle Scholar
  137. Pei R, Lamas-Samanamud GR (2014) Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol 80:5340–5348.  https://doi.org/10.1128/AEM.01434-14CrossRefPubMedPubMedCentralGoogle Scholar
  138. Pelfrene E, Willebrand E, Cavaleiro Sanches A, Sebris Z, Cavaleri M (2016) Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother 71:2071–2074.  https://doi.org/10.1093/jac/dkw083CrossRefPubMedGoogle Scholar
  139. Pelfrene E, Sebris Z, Cavaleri M (2019) Comment on Fauconnier A. Phage therapy regulation: from night to dawn. Viruses 11:771.  https://doi.org/10.3390/v11090771CrossRefPubMedCentralGoogle Scholar
  140. Pires D, Sillankorva S, Faustino A, Azeredo J (2011) Use of newly isolated phages for control of Pseudomonas aeruginosa PAO1 and ATCC 10145 biofilms. Res Microbiol 162:798–806.  https://doi.org/10.1016/j.resmic.2011.06.010CrossRefPubMedGoogle Scholar
  141. Pires DP, Boas DV, Sillankorva S, Azeredo J (2015) Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol 89:7449–7456.  https://doi.org/10.1128/JVI.00385-15CrossRefPubMedPubMedCentralGoogle Scholar
  142. Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK (2016a) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80:523–543.  https://doi.org/10.1128/MMBR.00069-15CrossRefPubMedPubMedCentralGoogle Scholar
  143. Pires DP, Oliveira H, Melo LD, Sillankorva S, Azeredo J (2016b) Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl Microbiol Biotechnol 100:2141–2151.  https://doi.org/10.1007/s00253-015-7247-0CrossRefGoogle Scholar
  144. Pirnay JP, De Vos D, Verbeken G, Merabishvili M, Chanishvili N, Vaneechoutte M, Van den Mooter G (2011) The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm Res 28:934–937.  https://doi.org/10.1007/s11095-010-0313-5CrossRefPubMedGoogle Scholar
  145. Pirnay JP, Verbeken G, Rose T, Jennes S, Zizi M, Huys I, Lavigne R, Merabishvili M, Vaneechoutte M, Buckling A et al (2012) Introducing yesterday’s phage therapy in today’s medicine. Future Virol 7:379–390.  https://doi.org/10.2217/fvl.12.24CrossRefGoogle Scholar
  146. Pirnay JP, Verbeken G, Ceyssens PJ, Huys I, De Vos D, Ameloot C, Fauconnier A (2018) The magistral phage. Viruses 10:64.  https://doi.org/10.3390/v10020064CrossRefPubMedCentralGoogle Scholar
  147. Pollini S, Fiscarelli E, Mugnaioli C, Di Pilato V, Ricciotti G, Neri AS, Rossolini GM (2011) Pseudomonas aeruginosa infection in cystic fibrosis caused by an epidemic metallo-β-lactamase-producing clone with a heterogeneous carbapenem resistance phenotype. Clin Microbiol Infect 17:1272–1275.  https://doi.org/10.1111/j.1469-0691.2011.03466.xCrossRefPubMedGoogle Scholar
  148. Rasamiravaka T, Labtani Q, Duez P, El Jaziri M (2015) The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int 2015:17.  https://doi.org/10.1155/2015/759348CrossRefGoogle Scholar
  149. Raz A, Serrano A, Hernandez A, Euler CW, Fischetti VA (2019) Isolation of phage lysins that effectively kill Pseudomonas aeruginosa in mouse models of lung and skin infection. Antimicrob Agents Chemother 63:e00024-19.  https://doi.org/10.1128/AAC.00024-19CrossRefPubMedPubMedCentralGoogle Scholar
  150. Reardon S (2014) Phage therapy gets revitalized. Nature 510:15–16.  https://doi.org/10.1038/510015aCrossRefPubMedGoogle Scholar
  151. Riou M, Carbonnelle S, Avrain L, Mesaros N, Pirnay JP, Bilocq F, De Vos D, Simon A, Piérard D, Jacobs F et al (2010) In vivo development of antimicrobial resistance in Pseudomonas aeruginosa strains isolated from the lower respiratory tract of intensive care unit patients with nosocomial pneumonia and receiving antipseudomonal therapy. Int J Antimicrob Agents 36:513–522.  https://doi.org/10.1016/j.ijantimicag.2010.08.005CrossRefPubMedGoogle Scholar
  152. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Kehagia V, Jones GR, Bruce KD (2005) Bacterial activity in cystic fibrosis lung infections. Respir Res 6:49.  https://doi.org/10.1186/1465-9921-6-49CrossRefPubMedPubMedCentralGoogle Scholar
  153. Rossitto M, Fiscarelli EV, Rosati P (2018) Challenges and promises for planning future clinical research into bacteriophage therapy against Pseudomonas aeruginosa in cystic fibrosis. An argumentative review. Front Microbiol 9:775.  https://doi.org/10.3389/fmicb.2018.00775CrossRefPubMedPubMedCentralGoogle Scholar
  154. Ryan EM, Gorman SP, Donnelly RF, Gilmore BF (2011) Recent advances in bacteriophage therapy: how delivery routes, formulation, concentration and timing influence the success of phage therapy. J Pharm Pharmacol 63:1253–1264.  https://doi.org/10.1111/j.2042-7158.2011.01324.xCrossRefPubMedGoogle Scholar
  155. Sahota JS, Smith CM, Radhakrishnan P, Winstanley C, Goderdzishvili M, Chanishvili N, Kadioglu A, O’Callaghan C, Clokie MR (2015) Bacteriophage delivery by nebulization and efficacy against phenotypically diverse Pseudomonas aeruginosa from cystic fibrosis patients. J Aerosol Med Pulm Drug Deliv 28:353–360.  https://doi.org/10.1089/jamp.2014.1172CrossRefPubMedGoogle Scholar
  156. Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, Downer VS, Fliege J, Hazle LA, Jain M et al (2014) Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect Control Hosp Epidemiol 35:S1–S67.  https://doi.org/10.1086/676882CrossRefPubMedGoogle Scholar
  157. Salmond GP, Fineran PC (2015) A century of the phage: past, present and future. Nat Rev Microbiol 13:777–786.  https://doi.org/10.1038/nrmicro3564CrossRefPubMedGoogle Scholar
  158. Sarhan WA, Azzazy HME (2015) Phage approved in food not as a therapeutic? Expert Rev Anti Infect Ther 13:91–101.  https://doi.org/10.1586/14787210.2015.990383CrossRefPubMedGoogle Scholar
  159. Saussereau E, Vachier I, Chiron R, Godbert B, Sermet I, Dufour N, Pirnay JP, De Vos D, Carrié F, Molinari N et al (2014) Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect 20:O983–O990.  https://doi.org/10.1111/1469-0691.12712CrossRefPubMedGoogle Scholar
  160. Shen K, Sayeed S, Antalis P, Gladitz J, Ahmed A, Dice B, Janto B, Dopico R, Keefe R, Hayes J et al (2006) Extensive genomic plasticity in Pseudomonas aeruginosa revealed by identification and distribution studies of novel genes among clinical isolates. Infect Immun 74:5272–5283.  https://doi.org/10.1128/IAI.00546-06CrossRefPubMedPubMedCentralGoogle Scholar
  161. Siegel JD, Rhinehart E, Jackson M, Chiarello L, The Healthcare Infection Control Practices Advisory Committee (2017) Multidrug-resistant organisms (MDRO) Management. Update of the management of multidrug-resistant organisms in healthcare settings, 2006. Available at: https://www.cdc.gov/infectioncontrol/pdf/guidelines/mdro-guidelines.pdf. Cited 15 Feb 2017
  162. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S (2013) Antimicrobial-resistant pathogens associated with healthcare-associated infections summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention 2009–2010. Infect Control Hosp Epidemiol 34:1–14.  https://doi.org/10.1086/668770CrossRefPubMedGoogle Scholar
  163. Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317CrossRefGoogle Scholar
  164. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, DArgenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM et al (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492.  https://doi.org/10.1073/pnas.0602138103CrossRefPubMedPubMedCentralGoogle Scholar
  165. Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Manoil C, Kirisits MJ, Starner TD, Wozniak DJ et al (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191:3492–3503.  https://doi.org/10.1128/JB.00119-09CrossRefPubMedPubMedCentralGoogle Scholar
  166. Stuart B, Lin JH, Mogayzel PJ (2010) Early eradication of Pseudomonas aeruginosa in patients with cystic fibrosis. Paediatr Respir Rev 11:177–184.  https://doi.org/10.1016/j.prrv.2010.05.003CrossRefPubMedPubMedCentralGoogle Scholar
  167. Sulakvelidze A, Alavidze Z, Morris JG (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659.  https://doi.org/10.1128/AAC.45.3.649-659.2001CrossRefPubMedPubMedCentralGoogle Scholar
  168. Sybesma W, Rohde C, Bardy P, Pirnay JP, Cooper I, Caplin J, Chanishvili N, Coffey A, De Vos D, Scholz AH et al (2018) Silk route to the acceptance and re-implementation of bacteriophage therapy – Part II. Antibiotics 7:35.  https://doi.org/10.3390/antibiotics7020035CrossRefPubMedCentralGoogle Scholar
  169. Theuretzbacher U (2009) Future antibiotics scenarios: is the tide starting to turn? Int J Antimicrob Agents 34:15–20.  https://doi.org/10.1016/j.ijantimicag.2009.02.005CrossRefPubMedGoogle Scholar
  170. Thiel K (2004) Old dogma, new tricks 21st century phage therapy. Nat Biotechnol 22:31–36.  https://doi.org/10.1038/nbt0104-31CrossRefPubMedGoogle Scholar
  171. Todd K (2019) The promising viral threat to bacterial resistance: the uncertain patentability of phage therapeutics and the necessity of alternative incentives. Duke Law J 68:767–805PubMedGoogle Scholar
  172. Torres-Barcelò C (2018) Phage therapy faces evolutionary challenges. Viruses 10:323CrossRefGoogle Scholar
  173. Torres-Barceló C, Hochberg ME (2016) Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol 24:249–256.  https://doi.org/10.1016/j.tim.2015.12.011CrossRefPubMedGoogle Scholar
  174. Torres-Barceló C, Arias-Sánchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME (2014) A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One 9:e106628.  https://doi.org/10.1371/journal.pone.0106628CrossRefPubMedPubMedCentralGoogle Scholar
  175. Trend S, Fonceca AM, Ditcham WG, Kicic A (2017) The potential of phage therapy in cystic fibrosis: essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. J Cyst Fibros 16:663–670.  https://doi.org/10.1016/j.jcf.2017.06.012CrossRefPubMedGoogle Scholar
  176. Tsui LC (1995) The cystic fibrosis transmembrane conductance regulator gene. Am J Respir Crit Care Med 151:S47CrossRefGoogle Scholar
  177. Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186:1241–1243.  https://doi.org/10.1016/S0140-6736(01)20383-3CrossRefGoogle Scholar
  178. Uchiyama J, Suzuki M, Nishifuji K, Kato SI, Miyata R, Nasukawa T, Yamaguchi K, Takemura-Uchiyama I, Ujihara T, Shimakura H et al (2016) Analyses of short-term antagonistic evolution between Pseudomonas aeruginosa strain PAO1 and phage KPP22 belonging to the family Myoviridae genus PB1-like viruses. Appl Environ Microbiol 82:4482–4491.  https://doi.org/10.1128/AEM.00090-16CrossRefPubMedPubMedCentralGoogle Scholar
  179. Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay JP (2007) European regulatory conundrum of phage therapy. Future Microbiol 2:485–491.  https://doi.org/10.2217/17460913.2.5.485CrossRefPubMedGoogle Scholar
  180. Vyas D, Aekka A, Vyas A (2015) Fecal transplant policy and legislation. World J Gastroenterol 21(1):6–11CrossRefGoogle Scholar
  181. Waddell TE, Franklin K, Mazzocco A, Kropinski AM, Johnson RP (2009) Generalized transduction by lytic bacteriophages. In: MRJ C, Kropinski AM (eds) Bacteriophages: methods and protocols, vol 1. Humana Press, Hertfordshire, pp 293–303CrossRefGoogle Scholar
  182. Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73:3693–3701.  https://doi.org/10.1128/IAI.73.6.3693-3701.2005CrossRefPubMedPubMedCentralGoogle Scholar
  183. Walters MC, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323.  https://doi.org/10.1128/AAC.47.1.317-323.2003CrossRefPubMedPubMedCentralGoogle Scholar
  184. Wang J, Hu B, Xu M, Yan Q, Liu S, Zhu X, Sun Z, Reed E, Ding L, Gong J et al (2006) Use of bacteriophage in the treatment of experimental animal bacteremia from imipenem-resistant Pseudomonas aeruginosa. Int J Mol Med 17:309–317.  https://doi.org/10.3892/ijmm.17.2.309CrossRefPubMedGoogle Scholar
  185. Waters EM, Neill DR, Kaman B, Sahota JS, Clokie MR, Winstanley C, Kadioglu A (2017) Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax 72:666–667.  https://doi.org/10.1136/thoraxjnl-2016-209265CrossRefPubMedPubMedCentralGoogle Scholar
  186. Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M, Łobocka M, Łusiak-Szelachowska M, Górski A (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177.  https://doi.org/10.3389/fmicb.2016.01177CrossRefPubMedPubMedCentralGoogle Scholar
  187. Wei Q, Ma LZ (2013) Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int J Mol Sci 14:20983–21005.  https://doi.org/10.3390/ijms141020983CrossRefPubMedPubMedCentralGoogle Scholar
  188. Winstanley C, O’Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol 24:327–337.  https://doi.org/10.1016/j.tim.2016.01.008CrossRefPubMedPubMedCentralGoogle Scholar
  189. World Medical Association (WMA) (2013) Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 10:2191–2194Google Scholar
  190. Wright A, Hawkins C, Änggård E, Harper D (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357.  https://doi.org/10.1111/j.1749-4486.2009.01973.xCrossRefPubMedGoogle Scholar
  191. Xu KD, McFeters GA, Stewart PS (2000) Biofilm resistance to antimicrobial agents. Microbiology 146:547–549.  https://doi.org/10.1099/00221287-146-3-547CrossRefPubMedGoogle Scholar
  192. Yoon SS, Hassett DJ (2004) Chronic Pseudomonas aeruginosa infection in cystic fibrosis airway disease: metabolic changes that unravel novel drug targets. Expert Rev Anti Infect Ther 2:611–623.  https://doi.org/10.1586/14787210.2.4.611CrossRefPubMedGoogle Scholar
  193. Young R, Gill JJ (2015) Phage therapy redux – what is to be done? Science 350(6265):1163–1164.  https://doi.org/10.1126/science.aad6791CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ersilia V. Fiscarelli
    • 1
  • Martina Rossitto
    • 1
  • Paola Rosati
    • 1
    Email author
  1. 1.Cystic Fibrosis Microbiology, Laboratory Department, Unit of Clinical EpidemiologyBambino Gesu Children’s Hospital, IRCCSRomeItaly

Personalised recommendations