Phages as Therapy or “Dietary Supplements” Against Multiresistant Bacteria?

  • Karin MoellingEmail author


Bacteria and phages form an ecosystem and play a role in obesity, in Intestinal bowel disease, neurological disorders, in the brain-gut axis and more recently in anticancer therapies. We have shown that fecal transfer can cure a patient from a life -threatening infection with Clostridium difficile. The microbiome and virome of the feces of a patient before and after fecal transfer has been analyzed, where phages play a role.

Phages form a quasispecies and are highly specialized to specific bacterial hosts. Further studies are required to develop broad-range phages similar to broad-range antibiotics.

Phages do not fit into the regulatory presently required definition as a medicinal product. They should be defined differently to enable scientists and medical doctors to evaluate them for general phage therapy. They should be defined as food supplements or dietary products, or probiotics similar to probiotic bacteria. Then they could be evaluated for more general applications for people with infections. The rules need to be changed.



I want to thank Dr. Felix Broecker for discussions and critical reading of the mansucript. I am grateful to “Betty” Kutter for critical reading of the manuscript.


There are no obligations.


  1. Appelt B, Böl GF, Greiner M, Lahrssen-Wiederholt M, Hensel A, EHEC Outbreak (2011) Investigation of the outbreak along the foodchain. Bundesinstitut für Risikobewertung, BfRGoogle Scholar
  2. Broecker F, Moelling K (2019) Evolution of immune systems from viruses and transposable elements. Front Microbiol.
  3. Broecker F, Kube M, Klumpp J, Schuppler M, Biedermann L, Hecht J, Hombach M, Keller PM, Rogler G, Moelling K (2013) Analysis of the intestinal microbiome of a recovered Clostridium difficile patient after fecal transplantation. Digestion 68:243–251CrossRefGoogle Scholar
  4. Broecker F, Klumpp J, Schuppler M, Russo G, Biedermann L et al (2016) Long-term changes of bacterial and viral compositions in the instestine of a recovered Clostridium difficile patient after fecal microbiota transplantation. Cold Spring Harb Mol Case Stud 2:a000448. Scholar
  5. Broecker F, Russo G, Klumpp J, Moelling K (2017) Stable core virome despite variable microbiome afer fecal transfer. Gut Microbes 8:214–220CrossRefGoogle Scholar
  6. Brüssow H (2019a) Hurdles for Phage therapy to become a reality-an editorial comment. Viruses 11:557. Scholar
  7. Brüssow H (2019b) Probiotics and prebiotics in clinical tests: an update. eCollection 2019:F1000ResGoogle Scholar
  8. Chan BK, Sistrom M, Wertz JE, Kaitlyn KE, Narayan D, Turner PE (2019) Phage seletion restores antibiotic sensitivity in psuedomonas aeruginosa. Sci Rep 6:26717CrossRefGoogle Scholar
  9. d’Hèrelle F (1917) Sur un microbe unvisible antagoniste des bacteries dysentériques, Comptes Rendues Acad Sci Paris 165:373–375, or d’Hèrelle F (1917) On an unvisible microbe antagonist of dysenteric bacteria Comptes Rendues Acad Sci Paris 165:373–375Google Scholar
  10. De Sordi L, Lourenco M, Debarbieux L (2019) I will survive: a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10:92–99Google Scholar
  11. Declaration H (2013) World medical association declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191–2194CrossRefGoogle Scholar
  12. Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, Hatfull GF, Spencer H (2019) Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med 25:730–733CrossRefGoogle Scholar
  13. DeFilipp Z, Bloom P, Soto MT et al (2019) Drug-resistant E coli bacteremia transmitted by fecal microbiota transplant. New Engl J Med Oct 30:2019. Scholar
  14. Dunne M, Rupf B, Tala M, Plückthun A, Loessner ML, Kilcher S (2019) Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep 29:1336–1350CrossRefGoogle Scholar
  15. Febvre HP et al (2019) PHAGE study: effects of supplemental bacteriophage intake on inflammation and gut microbiota in health adults. Nutrients 11:666CrossRefGoogle Scholar
  16. Fish R, Kutter E, Wheat G, Blasdel B, Kutateladze M et al (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25:273. Scholar
  17. Haeusler T (2006) Viruses vs. superbugs: a solution to the antibiotics crisis? Palgrave Macmillan, Basingstoke, p 298CrossRefGoogle Scholar
  18. Hankin EH (1896) L’action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera (in French). Ann Inst Pasteur Bacteriophage 10:511–523Google Scholar
  19. Hiroki A, Lemire S, Pires PD, Lu TK (2015) Engineering Moduar viral scaffolds for targeted bacterial population editing. Cell Syst 1:187–195CrossRefGoogle Scholar
  20. Hope A (2019) Liver transplant baby saved by “trained” virus at Saint-Luc hospital The Brussels Time, 22.5.2019 BelgiumGoogle Scholar
  21. Hupfeld M, Trasanidou D, Ramazzini L, Klumpp J, Loessner MJ, Kilcher S (2018) A functional type II-A CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage. Nucleic Acids Res 46:6920–6933CrossRefGoogle Scholar
  22. Jault P, Leclerc T, Jennes S, Pirnay JP, Que YA et al (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19:35–45CrossRefGoogle Scholar
  23. Kilcher S, Loessner MJ (2019) Engineering bacteriophages as versatile biologics. Trends Microbiol 27:355–367CrossRefGoogle Scholar
  24. Kilcher S, Studer P, Muessner C, Klumpp J, Loessner MJ (2018) Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria. Proc Natl Acad Sci U S A 115:567–572CrossRefGoogle Scholar
  25. Kuehn C, Rubalskii E, Rohde C reported on television, “Visite” 11.06.2019, Norddeutscher Rundfunk, NDRGoogle Scholar
  26. Kutter E, de Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86CrossRefGoogle Scholar
  27. Leitner L, Sybesma W, Chanishvili N, Goderdzishvili M, Chkhotua A, Ujmajuridze A, Schneider MP, Sartori A, Mehnert U, Bachmann LM, Kessler (2017) TM bacteriophages for treating urinary tract infections in patients undergoing transurethral ressection of the prostate: a eandomized, placebo-controlled, double-blind clincal trial. BMC Urol 17:90–95Google Scholar
  28. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR/Cas sytems. NatRev Mikrobiol 9:467–477Google Scholar
  29. Manrique P, Bolduc B, Walk ST, van der Oost J, de Vos WM, Young M (2016) Healthy human gut phageome. Proc Natl Acad Sci USA 13:1000–10405Google Scholar
  30. Medhekar B, Miller JF (2007) Diversity-generating retroelements. Curr Opin Microbiol 10:388–395CrossRefGoogle Scholar
  31. Moelling K (2019) New case reports with phage therapy- what is needed for more? Nurs Health Care 4:30–32Google Scholar
  32. Moelling K, Broecker F (2016) Fecal microbiota transplantation to fight Clostridium difficile infections and other intestinal diseases. Bacteriophage 6:e1251380CrossRefGoogle Scholar
  33. Moelling K, Broecker F, Willy C (2018) A wake-up call: we need phage therapy now. Viruses 10:688–692CrossRefGoogle Scholar
  34. Ott SJ, Waetzig GH, Rehman A, Moltzau-Anderson J, Bharti R, Grasis JA, Cassidy L, Tholey A, Fickenscher H, Seegert D, Rosenstiel P, Schreiber S (2017) Efficacy of sterile fecal filtrate transfer for treating patients with Clostridium difficile infection. Gastroenterology 152:799–811. e7CrossRefGoogle Scholar
  35. Pirnay JP, Verbeken G, Ceyssens PJ, Huys I, de Vos D, Ameloot C, Fauconnier A (2018) The Magistral phage. Viruses 10:64–69CrossRefGoogle Scholar
  36. Routy B et al (2018) Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359:91–97CrossRefGoogle Scholar
  37. Schmidt CG (2019) Phage therapy’s latest makeover. Nat Biotechnol 37:581–586Google Scholar
  38. Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, Segall AM, Taplitz R, Smith DM, Kerr K, Kumaraswamy M, Nizet V, Lin L, McCauley MD, Strathdee SA, Benson CA, Pope RK, Leroux BM, Picel AC, Mateczun AJ, Cilwa KE, Regeimbal JM, Estrella LA, Wolfe DM, Henry MS, Quinones J, Salka S, Bishop-Lilly KA, Young R, Hamilton T (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant acinetobacter baumannii infection. Antimicrob Agents Chemother 61:e00954–e00917CrossRefGoogle Scholar
  39. Sunagawa S, Coelho LP, Caffron S, Kultimaj R, Labadie K, Salazar G et al (2015) Ocean plankton. Structure and function of the global ocean microbiome. Science 348:1261359CrossRefGoogle Scholar
  40. Suttle CA (2005) Viruses in the sea. Nature 437:356–361CrossRefGoogle Scholar
  41. Suttle CA (2013) Viruses: unlocking the greatest biodiversity on Earth. Genome 56:542–544CrossRefGoogle Scholar
  42. Tsulukidze AP (1941) Experience of use of bacteriophages in the conditions of war traumatism (in Russian). Tbilisi, GruzmedgizGoogle Scholar
  43. Vogt D, Sperling S, Tkhilaishvili T, Trampuz A, Prinay JP, Willy C (2017) Beyond antibiotic therypy – future antiinfective strategies – an update 2017. Unfallchirurg 120:573–584CrossRefGoogle Scholar
  44. Wilbert S, Pirnay JP (2016) Silk route to the acceptance and re-implantation of bacteriophage therapy. Biotechnol J 11:595–600CrossRefGoogle Scholar
  45. Wright A, Hawkins CH, Anggard EE, Harper DR (2009) A controlled clinical trial of a therapeutic abcteriophage preparation in chronic otitis due to antibiotic-resistnt Pseudomonas aeruginosa; a preliminary report of effiacy. Clin Otolarynngol 34:349–357CrossRefGoogle Scholar
  46. Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF (2018) The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359:1366–1370CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Max-Planck-Institute for Molecular GeneticsBerlinGermany
  2. 2.Institute for Medical MicrobiologyUniversity ZurichZurichSwitzerland

Personalised recommendations