Filamentous Phages Affect Virulence of the Phytopathogen Ralstonia solanacearum

  • Yuichi Tasaka
  • Takeru Kawasaki
  • Takashi YamadaEmail author


ϕRSS-type filamentous phages are frequently found integrated in Ralstonia solanacearum genomes and affect host virulence after infection. ϕRSS1, a known virulence-enhancing phage, was found to be a truncated form of a larger phage (designated as ϕRSS0; 7288 nt) integrated in strain C319. A 626-nt ϕRSS0 sequence missing in ϕRSS1 DNA contains a nucleotide sequence element attP, corresponding to dif of R. solanacearum. Thus, ϕRSS0 was integrated at a dif site, similarly to CTXϕ of Vibrio cholerae, which uses the host XerC/D recombination system. ϕRSS0 could integrate into both the chromosome and megaplasmid of the host genome. The extra region of ϕRSS0 also contained an open reading frame (ORF13) of 156 amino acids with sequence similarity to DNA-binding phage regulators. The ϕRSS0-attP is located within the ORF13-coding region; therefore, integration results in a truncation of the C-terminus of ORF13. ORF13 may function as a phage repressor for immunity, because strain C319 (a ϕRSS0 lysogen) is resistant to second infection by ϕRSS0. C319 is susceptible to ϕRSS1, thus ϕRSS1 (without ORF13) seems to be an escaped superinfective phage derived from ϕRSS0. The diversity and dynamic rearrangements of ϕRSS-type phages/prophages in R. solanacearum and their effects on host virulence are discussed.


Filamentous phage Integration dif-XerCD system Phytopathogen Ralstonia solanacearum 


  1. Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T (2012a) Loss of virulence of the phytopathogen Ralstonia solanacearum through infection by ϕRSM filamentous phages. Phytopathology 102:469–477CrossRefGoogle Scholar
  2. Addy HS, Askora A, Kawasaki T, Fujie M, Yamada T (2012b) The filamentous phage ϕRSS1 enhances virulence of phytopathogenic Ralstonia solanacearum on tomato. Phytopathology 102:244–251CrossRefGoogle Scholar
  3. Ahmad AA, Askora A, Kawaski T, Fujie M, Yamada T (2014) The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front Microbiol 5:321CrossRefGoogle Scholar
  4. Ahmad AA, Kawabe M, Askora A, Kawasaki T, Fujie M, Yamada T (2017) Dynamic integration and excision of filamentous phage XacF1 in Xanthomonas citri pv. citri, the causative agent of citrus canker disease. FEBS Open Bio 7:1715–1721CrossRefGoogle Scholar
  5. Askora A, Yamada T (2015) Two different evolutionary lines of filamentous phages in Ralstonia solanacearum; their effects on bacterial virulence. Front Genet 6:217. Scholar
  6. Askora A, Kawasaki T, Usami S, Fujie M, Yamada T (2009) Host recognition and integration of filamentous phage ϕRSM in the phytopathogen, Ralstonia solanacearum. Virology 384:69–76CrossRefGoogle Scholar
  7. Askora A, Kawasaki T, Fujie M, Yamada T (2011) Resolvase-like serinerecombinase mediates integration/excision in the bacteriophage ϕRSM. J Biosci Bioeng 111:109–116CrossRefGoogle Scholar
  8. Buchen-Osmond C (2003) Inoviridae. In: Oracle AZ (ed) ICTVdB-The Universal Virus Database, version 3. ICTVdB Management, The Earth Institute, Biosphere 2 Center, Columbia UniversityGoogle Scholar
  9. Campos J, Martinez E, Suzarte E, Rodriguez BE, Marrero K, Silva Y, Ledón T, del Sol R, Fando R (2003) A novel filamentous phage of Vibrio cholerae, integrates into the same chromosomal site as CTXϕ. J Bacteriol 185:5685–5696CrossRefGoogle Scholar
  10. Carney BF, Denny TP (1990) A cloned avirulence gene from Pseudomonas solanacearum determines incompatibility on Nicotiana tabacum at the host species level. J Bacteriol 172:4836–4843CrossRefGoogle Scholar
  11. Carnoy C, Roten C-A (2009) The dif/Xer recombination systems in Proteobacteria. PLoS ONE 4(9):e6531CrossRefGoogle Scholar
  12. Dai H, Chiang KS, Kuo TT (1980) Characterization of a new filamentous phage Cf from Xanthomonas citri. J Gen Virol 46:277–289CrossRefGoogle Scholar
  13. Das B, Bischerour J, Val M-E, Barre F-X (2010) Molecular keys of the tropism of integration of the cholera toxin phage. Proc Natl Acad Sci USA 107:4377–4382CrossRefGoogle Scholar
  14. Das B, Bischerour J, Barre F-X (2011) VGJϕ integration and excision mechanisms contribute to the genetic diversity of Vibrio cholerae epidemic strains. Proc Natl Acad Sci USA 108:2516–2521CrossRefGoogle Scholar
  15. Davis BM, Waldor MK (2003) Filamentous phages linked to virulence of Vibrio cholerae. Curr Opin Microbiol 6:35–42CrossRefGoogle Scholar
  16. Denny TP (2006) Plant pathogenic Ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Amsterdam, pp 573–644CrossRefGoogle Scholar
  17. Gonzalez MD, Lichtensteiger CA, Caughlan R, Vimr ER (2002) Conserved filamentous prophage in Escherichia coli O18:K1:H7 and Yersinia pestis biovar. orientalis. J Bacteriol 184:6050–6055CrossRefGoogle Scholar
  18. Hayward AC (2000) Ralstonia solanacearum. In: Lederberg J (ed) Encyclopedia of microbiology, vol 4. Academic, San Diego, pp 32–42Google Scholar
  19. Huber KE, Waldor MK (2002) Filamentous phage integration requires the host recombinases XerC and XerD. Nature 417:656–659CrossRefGoogle Scholar
  20. Kang Y, Liu H, Genin S, Schell MA, Denny TP (2002) Ralstonia solanacearum requires type 4 pili to adhere to multiple surfaces and for natural transformation and virulence. Mol Microbiol 46:427–437CrossRefGoogle Scholar
  21. Kawasaki T, Nagata S, Fujiwara A, Satsuma H, Fujie M, Usami S, Yamada T (2007) Genomic characterization of the filamentous integrative bacteriophage ϕRSS1 and ϕRSM1, which infect Ralstonia solanacearum. J Bacteriol 189:5792–5802Google Scholar
  22. Kuo TT, Chao YS, Lin YH, Lin BY, Liu LF, Feng TY (1987a) Integration of the DNA of filamentous bacteriophage Cf1t into the chromosomal DNA of its host. J Virol 61:60–65CrossRefGoogle Scholar
  23. Kuo TT, Lin YH, Huang CM, Chang SF, Dai D, Feng TY (1987b) The lysogenic cycle of the filamentous phage Cf1t from Xanthomonas campestris pv. citri. Virology 156:305–312CrossRefGoogle Scholar
  24. Kuo TT, Tan MS, Su MT, Yang MK (1991) Complete nucleotide sequence of filamentous phage Cf1c from Xanthomonas campestris pv. citri. Nucleic Acids Res 19:2498CrossRefGoogle Scholar
  25. Lin NT, Chang RY, Lee SJ, Tseng YH (2000) Plasmids carrying cloned fragments of RF DNA from the filamentous phage ϕLF can be integrated into the host chromosome via site-specific integration and homologous recombination. Mol Genet Genom 266:425–435CrossRefGoogle Scholar
  26. Moyer KE, Kimsey HH, Waldor MK (2001) Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXϕ. Mol Microbiol 41:311–323CrossRefGoogle Scholar
  27. Negishi H, Yamada T, Shiraishi T, Oku H, Tanaka H (1993) Pseudomonas solanacearum plasmid pJTPS1 mediates a shift from the pathogenic to nonpathogenic phenotype. Mol Plant-Microbe Interact 6:203–209CrossRefGoogle Scholar
  28. Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M, Alvarenga R et al (2000) The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151–157CrossRefGoogle Scholar
  29. Vasse J, Genin S, Frey P, Boucher C, Brito B (2000) The hrpB and hrpG regulatory genes of Ralstonia solanacearum are required for different stages of the tomato root infection process. Mol Plant-Microbe Interact 13:259–267CrossRefGoogle Scholar
  30. Yamada T (2012) Bacteriophages of Ralstonia solanacearum: their diversity and utilization as biocontrol agents in agriculture. In: Kurtboke I (ed) Bacteriophage. InTech Open Access Publisher, Croatia, pp 113–139Google Scholar
  31. Yamada T (2013) Filamentous phages of Ralstonia solanacearum: double-edged swords for pahogenic bacteria. Front Microbiol 4:325. Scholar
  32. Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S, Fujie M (2007) New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology 153:2630–2639CrossRefGoogle Scholar
  33. Yamada T, Sato S, Ishikawa H, Fujiwara A, Kawasaki T, Fujie M, Ogata, H (2010) A jumbo phage infecting the phytopathogen Ralstonia solanacearumdefines a new lineage of the Myovirus family. Virology 398:135–147Google Scholar
  34. Yao J, Allen C (2007) The plant pathogen Ralstonia solanacearum needs aerotaxis for normal biofilm formation and interactions with its tomato host. J Bacteriol 189:6415–6424CrossRefGoogle Scholar
  35. Zinder ND, Horiuchi K (1985) Multiregulatory element of filamentous bacteriophages. Microbiol Rev 49:101–106CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Yuichi Tasaka
    • 1
  • Takeru Kawasaki
    • 1
  • Takashi Yamada
    • 1
    Email author
  1. 1.Department of Molecular Biotechnology, Graduate School of Advanced Sciences of MatterHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations