Constructive Method of Vegetation Microwave Monitoring

  • Costas A. Varotsos
  • Vladimir F. Krapivin


Vegetation cover is most affected by anthropogenic reconstruction and revision. The purpose of this chapter is therefore threefold:


  1. Chukhlantsev AA (2006) Microwave radiometry of vegetation canopies. Springer, BerlinGoogle Scholar
  2. Dao Van Tuyet, Nguyen Xuan Man, Le Thi Thuy Van, Krapivin VF, Mkrtchyan FA, Nguyen Thanh Hung, Le Ngoc Thanh (2015) Global model of carbon cycle as instrument of primary agriculture production assessment. Proceedings of the International Symposium “Some Aspects of Contemporary Issues in Ecoinformatics”, 20th March 2015, Hochiminh City, Vietnam. Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology, Hochiminh City, pp 50–58Google Scholar
  3. Del Frate F, Ferrazzoli P, Schiavon G (2003) Retriveing soil moisture and agricultural variables by microwave radiometry using neural networks. Proc SPIE 84(2):174–183Google Scholar
  4. DeWitt DP, Nutter GD (eds) (1988) Theory and practice of radiation thermometry. Wiley, New YorkGoogle Scholar
  5. Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003) Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Proc SPIE 84(3):393–410Google Scholar
  6. Engman ET, Chauhan N (1995) Status of microwave soil moisture measurements with remote sensing. Proc SPIE 51(1):189–198Google Scholar
  7. Ferrazzoli P, Guerriero L (1996) Passive microwave remote sensing of forests: a model investigation. IEEE Trans Geosci Remote 34(2):433–443CrossRefGoogle Scholar
  8. Font J, Lagerloef GSE, Vine DL, Camps A (2002) Open issues for the soil moisture and ocean salinity (SMOS) satellite mission salinity retrieval. Proceedings of the First Results Workshop on EuroSTARRS, WISE, LOSAC Compaigns, 4–6 November 2002, Touluse, France. European Space Agency, The Netherlands, pp 7–16Google Scholar
  9. Friedi MA, Mclver DK, Hodges JCF, Zhang XY, Muchoney D, Strahler AH, Woodcock CE, Gopal S, Schneider A, Cooper A, Baccini A, Gao F, Schaaf C (2002) Global land cover mapping from MODIS: algorithms and early results. Proc SPIE 83(1–2):287–302Google Scholar
  10. Karam MA, Fung AK, Lang RH, Chauhan NS (1992) A microwave scattering model for layered vegetation. IEEE Trans Geosci Remote 30(4):767–784CrossRefGoogle Scholar
  11. Kondratyev KY, AlA G, Varotsos CA (2002a) Environmental disasters: anthropogenic and natural. Springer/PRAXIS, ChichesterGoogle Scholar
  12. Kondratyev KY, Krapivin VF, Phillips GW (2002b) Global environmental change: modelling and monitoring. Springer, BerlinCrossRefGoogle Scholar
  13. Kondratyev KY, Krapivin VF, Phillips GW (2003a) Arctic Basin pollution dynamics. In: Bobylev LP, Kondratyev KY, Johannessen OM (eds) Arctic environment variability in the context of global change. Springer/Praxis, Chichester, pp 309–362Google Scholar
  14. Kondratyev KY, Krapivin VF, Varotsos CA (2003b) Global carbon cycle and climate change. Springer/PRAXIS, ChichesterGoogle Scholar
  15. Kondratyev KY, Krapivin VF, Savinykh VP, Varotsos CA (2004) Global ecodynamics: a multidimensional analysis. Springer-Praxis, ChichesterCrossRefGoogle Scholar
  16. Kondratyev KY, Ivlev LS, Krapivin VF, Varotsos CA (2006a) Atmospheric aerosol properties: formation, processes and impacts. Springer/PRAXIS, ChichesterGoogle Scholar
  17. Kondratyev KY, Krapivin VF, Varotsos CA (2006b) Natural disasters as interactive components of global Ecodynamics. Springer/Praxis, ChichesterGoogle Scholar
  18. Krapivin VF (1993) Mathematical model for global ecological investigations. Ecol Model 67(204):103–127CrossRefGoogle Scholar
  19. Krapivin VF (1996) The estimation of the Peruvian current ecosystem by a mathematical model of biosphere. Ecol Model 91:1–14CrossRefGoogle Scholar
  20. Krapivin VF, Kelley JJ (2009) Model-based method for the assessment of global change in a nature-society system. In: Cracknell AP, Krapivin VF, Varotsos CA (eds) Problems of global climatology and ecodynamics. Springer/Praxis, Chichester, pp 133–184CrossRefGoogle Scholar
  21. Krapivin VF, Shutko AM (2012) Information technologies for remote monitoring of the environment. Springer/Praxis, ChichesterCrossRefGoogle Scholar
  22. Krapivin VF, Soldatov VYu (2014) The organic carbon cycle in conditions of freezing seas. Proceedings of the 29-th International Symposium on Okhotsk Sea and Sea Ice. 16–19 Frbruary 2014, Mombetsu, Hokkaido, Japan. The Okhotsk Sea and Cold Ocean Research Association, Mombetsu, Hokkaido, Japan, pp 275–278Google Scholar
  23. Krapivin VF, Varotsos CA (2007) Globalization and sustainable development. Springer/Praxis, ChichesterGoogle Scholar
  24. Krapivin VF, Varotsos CA (2008) Biogeochemical cycles in globalization and sustainable development. Springer/Praxis, ChichesterGoogle Scholar
  25. Krapivin VF, Varotsos CA (2016) Modelling the CO2 atmosphere-ocean flux in the upwelling zones using radiative transfer tools. J Atmos Sol Terr Phys 150-151:47–54CrossRefGoogle Scholar
  26. Krapivin VF, Shutko AM, Chukhlantsev AA, Golovachev SP, Phillips GW (2006) GIMS-based method vegetation microwave monitoring. Environ Model Softw 21:330–345CrossRefGoogle Scholar
  27. Krapivin VF, Soldatov VY, Varotsos CA, Cracknell AP (2012) An adaptive information technology for the operative diagnostics of the tropical cyclones; solar-terrestrial coupling mechanisms. J Atmos Sol Terr Phys 89:83–89CrossRefGoogle Scholar
  28. Krapivin VF, Varotsos CA, Soldatov VY (2015a) New ecoinformatics tools in environmental science: applications and decision-making. Springer, LondonCrossRefGoogle Scholar
  29. Krapivin VF, Mkrtchyan FA, Tuyet Dao Van (2015b) Constructive method for the vegetation microwave monitoring. Proceedings of the International Symposium on Engineering Ecology, 2–4 December 2015, Moscow. The Russian Sciences Engineering A.S. Popov Society for Radio, Electronics and Communication, Moscov, pp 21–27Google Scholar
  30. Krapivin VF, Varotsos CA, Nghia BQ (2017a) A modeling system for monitoring water quality in lagoons. Water Air Soil Pollut 228(397):1–12Google Scholar
  31. Krapivin VF, Varotsos CA, Soldatov VY (2017b) The Earth’s population can reach 14 billion in the 23rd century without significant adverse effects on survivability. Int J Environ Res Public Health 14(8):3–18CrossRefGoogle Scholar
  32. Krapivin VF, Varotsos CA, Marechek SV (2018) The dependence of the soil microwave attenuation on frequency and water content in different types of vegetation: an empirical model. Water Air Soil Pollut 229(110):1–10Google Scholar
  33. Li S, Chen X (2014) A new bare soil index for rapid mapping developing areas using Landsat 8 data, vol XL-4. The International Archives of the Photogrammometry, Remote Sensing and Spatial Information Sciences, ISPRS, China, pp 139–144Google Scholar
  34. Li Z, Zhao X, Kahn R, Mishchenko M, Remer L, Lee K-H, Wang M, Laszlo I, Nakajima T, Maring H (2009) Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann Geophys 27:2755–2770CrossRefGoogle Scholar
  35. Loi DT, Chou T-Y, Fang Y-M (2017) Integration of GIS and remote sensing for evaluating forest canopy density index in Trai Nguyen Province, Vietnam. Int J Environ Sci Dev 8(8):530–542CrossRefGoogle Scholar
  36. Mintzer IM (1987) A matter of degrees: the potential for controlling the greenhouse effect. World Resources Institute Research Report No. 15, Washington, 70 ppGoogle Scholar
  37. Nitu C, Krapivin VF, Pruteanu E (2004) Ecoinformatics: intelligent systems in ecology. Magic Print, Onesti, BucharestGoogle Scholar
  38. Nitu C, Krapivin VF, Soldatov VY (2013) Information-modeling technology for environmental investigations. Matrix ROM, BucharestGoogle Scholar
  39. Nitu С, Dobrescu AS, Krapivin VF, Shutko AM, Haarbtink R (2015a) Mobile remote-sensing platforms for environmental monitoring. Proceedings of the 20th International Conference on Control Systems and Computer Science, 27–29 May 2015, Bucharest, Romania. Bucharest: IEEE, pp 952–958Google Scholar
  40. Nitu C, Dumitrasku A, Krapivin VF, Mkrtchyan FA (2015b) Reducing risks in agriculture. Proceedings of the 20th International Conference on Control Systems and Computer Science, 27–29 May 2015, Bucharest, Romania. Bucharest: University Politehnica of Bucharest Campus, pp 941–945Google Scholar
  41. Phillips GW, Krapivin VF, Shutko AM, Chukhlantsev AA, Golovachev S.P. (2004) A new technology of vegetation microwave monitoring. Proceedings of the seventh international conference DAS, 27–29 June 2004, Suceava, Romania, pp 70–74Google Scholar
  42. Phillips GW, Nitu C, Chukhlantsev AA, Golovachev SP, Krapivin VF, Shutko AM (2009) A new technology of vegetation microwave monitoring. The Scientific Bulletin of Electrical Enginering Faculty, University “Valahia” of Targoviste 11(2):95–98Google Scholar
  43. Schmugge TW (1990) Measurements of surface soil moisture and temperature. In: Hobbs RJ, Mooney HA (eds) Remote sensing of biosphere functioning. Springer, New York, pp 31–62CrossRefGoogle Scholar
  44. Sellers PJ, Bounoua L, Collatz GJ, Randall DA, Dazlich DA, Los SO, Berry JA, Fung I, Tucker CJ, Field CB, Jensen TG (1996a) Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate. Science 271:1402–1406CrossRefGoogle Scholar
  45. Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA, Collatz GJ, Randall DA (1996b) A revised land surface parametrization (SiB2) for atmospheric GCMs. Part II: the generation of global fields of terrestrial biophysical parameters from satellite data. J Clim 9(4):708–737Google Scholar
  46. Sellers PJ, Randall DA, Collotz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996c) A revised land surface parametrization (SiB2) for atmospheric GCMs. Part 1: model formulation. J Clim 9(4):676–705CrossRefGoogle Scholar
  47. Shi L, Qiu YB, Shi JC (2013) Study of the microwave emissivity characteristics of vegetation over the Northern Hemisphere. Guang Pu Xue Yu Guang Pu Fen Xi 33(5):1157–1162Google Scholar
  48. Shutko AM (1986) Microwave radiometry of water surface and grounds. Science Publication House, Moscow. 204 pp. [in Russian]Google Scholar
  49. Shutko AM (1987) Remote sensing of waters and lands via microwave radiometry (the principles of method, problems feasible for solving, economic use). Pontif Acad Sci Scr Varia 68:413–441Google Scholar
  50. Shutko AM (1992) Soil-vegetation characteristics at microwave wavelengths. In: Mather P (ed) Understanding the terrestrial environment. The role of the earth observations from space. Taylor & Francis, London – Washington, DC, pp 53–66Google Scholar
  51. Shutko AM (1997) Remote sensing of soil moisture and moisture related parameters by means of microwave radiometry. In: Sorooshian S, Gupta H, Rodda J (eds) Global environmental change and land surface processes in hydrology: the trials and tribulations of modeling and measuring. NATO ASI series, serie I: global environmental changes 46:263–273Google Scholar
  52. Shutko AM, Krapivin VF, Mkrtchyan FA, Reutov EA, Novichkhin EP, Leonidov VA, Mishanin VG, Tsankov NS (1994) Econo-ecological estimates of the effectiveness of utilizing remotely sensed data and GIS information for soil moisture and moisture related parameters determination (Geoinformation Monitoring System Approach – GIMS). Proceedings of the ICID, Varna, 7–9 May, pp 185–189Google Scholar
  53. Shutko AM, Reutov EA, Golovachev SP (1995) Estimation of soil moisture profiles and root zone moisture content by means of microwave radiometry and a priory information. Proceedings of the ESA/NASA International Workshop on Passive Microwave Remote Sensing of Land-Atmosphere Interaction, Saint-Larry, France, 11–15 January 1993. Ed. by B.Choudhury, Y.Kerr, E.Njoku, and P.Pampaloni, Utrecht Publ, The Netherlands, pp 461–474Google Scholar
  54. Soldatov, VYu (2010) A sequential analysis method for the prediction of tropical hurricanes (typhoons). Proceedings of the Ninth International Symposium “Ecoinformatics Problems”, 9–11 December 2010, Moscow. The Moscow Sciences Engineering AS Popov Society for Radio, Electronics and Communication, Moscow, pp 80–89Google Scholar
  55. Soldatov, VYu (2015) Remote sensing monitoring of the atmosphere-ocean system as generator of tropical cyclones. Proceedings of the 30th International Symposium on Okhotsk Sea & Sea Ice. 15–19 February 2015. Mombetsu, Hokkaido, Japan. The Okhotsk Sea & Cold Ocean Research Association, Mombetsu, Hokkaido, Japan, pp 199–202Google Scholar
  56. Soldatov VY, Nitu C, Krapivin VF (2011) Information-modeling technology for the operative diagnostics of the ocean-atmosphere system. The Scientific Bulletin of Electrical Enfineering Faculty, Valahia University of Targoviste, Romania 2:82–89Google Scholar
  57. Varotsos CA, Krapivin VF (2017) A new big data approach based on geoecological information-modeling system. Big Earth Data 1(1–2):47–63CrossRefGoogle Scholar
  58. Varotsos CA, Krapivin VF, Soldatov VY (2014) Modeling the carbon and nitrogen cycles. Front Environ Sci Air Pollut 2:8. Scholar
  59. Weng F (2010) Observations and simulations of microwave land emissivity. ECMWF-JCSDA Workshop on Assimilating Satellite Observations of Clouds and Precipitation into NWP Models, 15–17 June, United Kingdom, pp 85–92Google Scholar
  60. Zhang Z, Yu X, Zhao S, Chai L (2013) Assessment and analysis of microwave emissivity and transmissivity of a deciduous forest towards the estimate of vegetation biomass. Sci China Earth Sci 57(3):534–541CrossRefGoogle Scholar
  61. Zribi M, Le Hégarat-Mascle S, Taconet O, Ciarletti V, Vidal-Madjar D, Boussem MR (2010) Derivation of wild vegetation cover density in semi-arid regions: ERS2/SAR evaluation. Int J Remote Sens 24(6):1335–1352CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Costas A. Varotsos
    • 1
  • Vladimir F. Krapivin
    • 2
  1. 1.National and Kapodistrian University of Athens (NKUA)AthensGreece
  2. 2.Institute of Radio-Engineering and ElectronicsFryazinoRussia

Personalised recommendations