Experience Analysis Through an Event Based Model Using Mereotopological Relations: From Video to Hypergraph

  • Giles BeaudonEmail author
  • Eddie Soulier
  • Anne Gayet
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1160)


Improving the customer experience is now strategic for insurance business. Current practices focus on subjective customer experience. In this paper, we claim that experience could be defined as a situation being processed. Thus, we propose an artifact for observation of experiences through an event based model. From video corpus, this model calculates mereotopological relations to identify “drops of experiences” as a hypergraph. Designed as a tool for marketing teams, this artifact aims to help them identify relevant customer experiences.


Experience Data science Event Computer vision Mereotopology Hypergraph 


  1. 1.
    Beaudon, G., Soulier, E.: Customer experience analytics in insurance: trajectory, service interaction and contextual data. In: Information Technology and Systems, vol. 918, pp. 187–198 (2019)Google Scholar
  2. 2.
    Perrin, G.: Mutuelles: La concentration du secteur se poursuit, Argus de l’assurance (2017)Google Scholar
  3. 3.
    Pine II, B.J., Gilmore, J.H.: Welcome to the experience economy. Harv. Bus. Rev. 76, 97–105 (1998)Google Scholar
  4. 4.
    Schmitt, B.H.: Customer Experience Management. A Revolutionary Approach to Connecting with Your Customers. Wiley, New Jersey (2003)Google Scholar
  5. 5.
    Moschetti-Jacob, F., Création d’un artefact modulaire d’aide à la conception de parcours client cross-canal visant à développer les capacités des managers des entreprises du secteur du commerce, Thesis, Paris-Dauphine (2016)Google Scholar
  6. 6.
    James, W.: Philosophie de l’Expérience, Trad. by E. Brun et M. Paris. Original Title: A Pluralistic Universe. Paris: Ernest Flammarion Éditeur, 368 p. Collection: Bibliothèque de philosophie scientifique dirigée par Gustave Le Bon (1910)Google Scholar
  7. 7.
    Whitehead, A.N.: Process and Reality. An Essay in Cosmology (Gifford Lectures, University of Edinburgh). Cambridge University Press, New York (1929). Macmillan, New YorkGoogle Scholar
  8. 8.
    Plutchik R., Kellerman H.: Emotion: Theory, Research, and Experience: Biological Foundations of Emotions (1986)Google Scholar
  9. 9.
    Ramaswamy, S., DeClerck, N.: Customer perception analysis using deep learning and NLP. In: Procedia Computer Science, vol. 140, pp. 170–178 (2018)Google Scholar
  10. 10.
    Suresh, S., Guru Rajan, T.S., Gopinath, V.: VoC-DL: revisiting voice of customer using deep learning. In: Innovative Applications of Artificial Intelligence (IAAI-18) (2018)Google Scholar
  11. 11.
    Sugianto, N., Tjondronegoro, D., Tydd, B.: Deep residual learning for analyzing customer satisfaction using video surveillance. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (2018)Google Scholar
  12. 12.
    Guan, C., Qin, S., Long, Y.: Apparel-based deep learning system design for apparel style recommendation. Int. J. Cloth. Sci. Technol. 31(3), 376–389 (2019)CrossRefGoogle Scholar
  13. 13.
    Khan, Y., Shafiq, S., Naeem, A., Ahmed, S., Safwan, N., Hussain, S.: Customers churn prediction Using Artificial Neural Networks (ANN) in Telecom Industry. IJACSA 10(9), 132–142 (2019)Google Scholar
  14. 14.
    Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You Only Look Once : Unified, Real-Time Object Detection. CoRR, abs/1506.02640 (2015)Google Scholar
  15. 15.
    Tokmakov, P., Schmid, C., Alahari, K.: Learning to segment moving objects. Int. J. Comput. Vis. 127(3), 282–301 (2019)CrossRefGoogle Scholar
  16. 16.
    Wang, H., Pirk, S., Yumer, E., Kim, V., Sener, O., Sridhar, S., Guibas, L.: Learning a generative model for multi-step human-object interactions from videos. Comput. Graph. Forum 38, 367–378 (2019)CrossRefGoogle Scholar
  17. 17.
    Arsic, D., Hofmann, M., Schuller, B., Schuller, B., Rigoll, G.: Multi-camera person tracking and left luggage detection applying homographic transformation, In: Proceedings 10th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, PETS 2007, in Association with ICCV 2007, pp. 55–62 (2007)Google Scholar
  18. 18.
    Weinzaepfel, P.: Motion in Action: Optical Flow Estimation and Action Localization in Videos. Computer Vision and Pattern Recognition. Université Grenoble Alpes (2016)Google Scholar
  19. 19.
    Varzi, A.: On the boundary between mereology and topology. In: Proceedings of the 16th International Wittgenstein Symposium, pp. 423–442, Vienna (1994)Google Scholar
  20. 20.
    Suchan, J.: Declarative Reasoning about Space and Motion with Video. KI - Künstliche Intelligenz 31(4), 321–330 (2017)CrossRefGoogle Scholar
  21. 21.
    Johnson, J.: Hypernetworks of complex systems. In: Social-Informatics and Telecommunications Engineering. Lecture Notes of the Institute for Computer Sciences, vol. 4, pp. 364–375 (2009)Google Scholar
  22. 22.
    Munoz-Arcentales, A., Montoya, A., Chalen, M., Velásquez, W.: Improve customer experience based on recommendation and detection of a pattern change in eating habits. In: IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, pp. 221–225 (2018)Google Scholar
  23. 23.
    Saru, B., Ketki, M.: A new approach towards co-extracting opinion-targets and opinion words from online reviews. In: 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, pp. 1–4 (2017)Google Scholar
  24. 24.
    Yang, C., Zhang, C., Chen, X., Ye, J., Han, J.: Did you enjoy the ride? Understanding passenger experience via heterogeneous network embedding. In: IEEE 34th International Conference on Data Engineering (ICDE), Paris, pp. 1392–1403 (2018)Google Scholar
  25. 25.
    Kusinitz, S.: The Definition of a Buyer Persona [in Under 100 Words], Hubspot (2014)Google Scholar
  26. 26.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28(1), 75–105 (2004)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Clarke, B.L.: A calculus of individuals based on “connection”. Notre Dame J. Formal Logic 22(3), 204–218 (1981)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Smith, B.: Ontology and the logistic analysis of reality. In: Proceedings of the International Workshop on Formal Ontology in Conceptual Analysis and Knowledge Representation, pp. 51–68 (1993)Google Scholar
  30. 30.
    Grüninger, M., Aameri, B: A New Perspective on the Mereotopology of RCC8, 13 p (2017)Google Scholar
  31. 31.
    Gephi. Accessed 20 Dec 2019
  32. 32.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  33. 33.
    Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 10, P10008 (2008). (12p)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Tech-CICO TeamUniversity of Technology of TroyesTroyesFrance
  2. 2.AI & DataParisFrance

Personalised recommendations