Advertisement

Radar System for the Reconstruction of 3D Objects: A Preliminary Study

  • Jeneffer Barberán
  • Ginna Obregón
  • Darwin Moreta
  • Manuel Ayala
  • Javier Obregón
  • Rodrigo Domínguez
  • Jorge Luis BueleEmail author
Conference paper
  • 303 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1160)

Abstract

Objects recognition and their reconstruction is a process that involves a significant economic investment. This manuscript presents the basis for the design of a system that detects objects, extracts its main characteristics and digitally reconstructs them in three dimensions considering a reduced economic investment. The popular technological tool Kinect on its version 2.0 and MATLAB software have been linked to develop an efficient algorithm. Next, the process to obtain this prototype is briefly described, as well as the results from the corresponding experimental tests.

Keywords

Image processing Kinect sensor 3D object reconstruction 

References

  1. 1.
    Buele, J., Franklin Salazar, L., Altamirano, S., Abigail Aldás, R., Urrutia-Urrutia, P.: Plataforma y aplicación móvil para proporcionar información del transporte público utilizando un dispositivo embebido de bajo costo. RISTI – Rev Iber. Sist. e Tecnol. Inf. E17, 476–489 (2019)Google Scholar
  2. 2.
    Fu, K.K., Wang, Z., Dai, J., Carter, M., Hu, L.: Transient Electronics: Materials and Devices (2016).  https://doi.org/10.1021/acs.chemmater.5b04931
  3. 3.
    Fernández-S, Á., Salazar-L, F., Jurado, M., Castellanos, E.X., Moreno-P, R., Buele, J.: Electronic system for the detection of chicken eggs suitable for incubation through image processing (2019).  https://doi.org/10.1007/978-3-030-16184-2_21
  4. 4.
    Franceschetti, G., Lanari, R.: Synthetic aperture radar processing (2018).  https://doi.org/10.1201/9780203737484
  5. 5.
    Ramachandra, K.V.: Maneuvering target tracking. In: Kalman Filtering Techniques for Radar Tracking (2018)Google Scholar
  6. 6.
    Shapero, S.: Introduction to Modern EW Systems, 2nd Edition de Martino, A.) [Book review]. IEEE Aerosp. Electron. Syst. Mag. 34, 62–63 (2019)CrossRefGoogle Scholar
  7. 7.
    McNairn, H., Shang, J.: A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In: Remote Sensing and Digital Image Processing (2016).  https://doi.org/10.1007/978-3-319-47037-5_15
  8. 8.
    De Maio, A., Eldar, Y.C., Haimovich, A.M.: Compressed Sensing in Radar Signal Processing. Cambridge University Press, Cambridge (2019).  https://doi.org/10.1017/9781108552653CrossRefGoogle Scholar
  9. 9.
    Mcfadyen, A., Mejias, L.: A survey of autonomous vision-based see and avoid for unmanned aircraft systems (2016).  https://doi.org/10.1016/j.paerosci.2015.10.002
  10. 10.
    Starodubov, D., McCormick, K., Nolan, P., Volfson, L., Finegan, T.M.: Eye safe single aperture laser radar scanners for 3D acquisition. In: Radar Sensor Technology XX (2016).  https://doi.org/10.1117/12.2224298
  11. 11.
    Zennaro, S., Munaro, M., Milani, S., Zanuttigh, P., Bernardi, A., Ghidoni, S., Menegatti, E.: Performance evaluation of the 1st and 2nd generation Kinect for multimedia applications. In: Proceedings - IEEE International Conference on Multimedia and Expo (2015).  https://doi.org/10.1109/ICME.2015.7177380
  12. 12.
    DiFilippo, N.M., Jouaneh, M.K.: Characterization of different Microsoft Kinect sensor models. IEEE Sens. J. 18, 4554–4564 (2015)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto Superior Tecnológico Tsa’chilaSanto DomingoEcuador
  2. 2.SISAu Research GroupUniversidad Tecnológica IndoaméricaAmbatoEcuador
  3. 3.Escuela Superior Politécnica de ChimborazoRiobambaEcuador

Personalised recommendations